Computing and Visualization in Science

, Volume 11, Issue 4–6, pp 363–372 | Cite as

FEM for elliptic eigenvalue problems: how coarse can the coarsest mesh be chosen? An experimental study

  • L. Banjai
  • S. Börm
  • S. SauterEmail author
Regular article


In this paper, we consider the numerical discretization of elliptic eigenvalue problems by Finite Element Methods and its solution by a multigrid method. From the general theory of finite element and multigrid methods, it is well known that the asymptotic convergence rates become visible only if the mesh width h is sufficiently small, h ≤ h 0. We investigate the dependence of the maximal mesh width h 0 on various problem parameters such as the size of the eigenvalue and its isolation distance. In a recent paper (Sauter in Finite elements for elliptic eigenvalue problems in the preasymptotic regime. Technical Report. Math. Inst., Univ. Zürich, 2007), the dependence of h 0 on these and other parameters has been investigated theoretically. The main focus of this paper is to perform systematic experimental studies to validate the sharpness of the theoretical estimates and to get more insights in the convergence of the eigenfunctions and -values in the preasymptotic regime.


Eigenvalue Problem Multigrid Method Nest Iteration Rayleigh Quotient Mesh Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Babuška I. and Aziz A.K. (1972). The mathematical foundation of the finite element method. In: Aziz, A.K. (eds) The Mathematical Foundation of the Finite Element Method with Applications to Partial Differential Equations, pp 5–359. Academic Press, New York Google Scholar
  2. 2.
    Babuška, I., Osborn, J.: Eigenvalue problems. In: Ciarlet, P., Lions J. (eds.) Finite Element Methods (Part 1). Handbook of Numerical Analysis, vol. II, pp 641–788. Elsevier Science Publishers, Amsterdam (1991)Google Scholar
  3. 3.
    Brandt A., McCormick S. and Ruge J. (1983). Multigrid methods for differential eigenproblems. SIAM J. Sci. Stat. Comput. 4: 244–260 zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brownell F. (1955). Extended asymptotic eigenvalue distributions for bounded domains in n-space. Pac. J. Math. 5: 483–499 zbMATHMathSciNetGoogle Scholar
  5. 5.
    Brownell F. (1955). An extension of Weyl’s asymptotic law for eigenvalues. Pac. J. Math. 5: 483–499 zbMATHMathSciNetGoogle Scholar
  6. 6.
    Cai Z., Mandel J. and McCormick S. (1997). Multigrid methods for nearly singular linear equations and eigenvalue problems. SIAM J. Numer. Anal. 34: 178–200 zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chatelin F. (1974). La méthode de Galerkin. Ordre de convergence des éléments propres. C.R. Acad. Sci. Pairs Sér. A 278: 1213–1215 zbMATHMathSciNetGoogle Scholar
  8. 8.
    Chatelin F. (1983). Spectral Approximation of Linear Operators. Academic Press, New York zbMATHGoogle Scholar
  9. 9.
    Courant R. and Hilbert D. (1924). Methoden der Mathematischen Physik. Bd. 1. Springer, Berlin Google Scholar
  10. 10.
    Friese T., Deuflhard P. and Schmidt F. (1999). A multigrid method for the complex Helmholtz eigenvalue problem. In: Lai, C.-H., Bjorstad, P., Cross, M., and Widlund, O. (eds) Procs 11th International Conference on Domain Decomposition Methods, pp 18–26. DDM-org Press, Bergen Google Scholar
  11. 11.
    Hackbusch W. (1979). On the computation of approximate eigenvalues and eigenfunctions of elliptic operators by means of a multi-grid method. SIAM J. Numer. Anal. 16(2): 201–215 zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hackbusch, W.: Multi-Grid Methods and Applications, 2nd edn (2003). Springer, Berlin (1985)Google Scholar
  13. 13.
    Hackbusch W. (1992). Elliptic Differential Equations. Springer, Heidelberg zbMATHGoogle Scholar
  14. 14.
    Heuveline V. and Bertsch C. (2000). On multigrid methods for the eigenvalue computation of nonselfadjoint elliptic operators. East West J. Numer. Math. 8: 275–297 zbMATHMathSciNetGoogle Scholar
  15. 15.
    Hwang T. and Parsons I. (1992). A multigrid method for the generalized symmetric eigenvalue problem: Part I algorithm and implementation. Int. J. Numer. Meth. Eng. 35: 1663 zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Hwang T. and Parsons I. (1992). A multigrid method for the generalized symmetric eigenvalue problem: Part II performance evaluation. Int. J. Numer. Meth. Eng. 35: 1677 zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hwang T. and Parsons I. (1992). Multigrid solution procedures for structural dynamics eigenvalue problems. Comput. Mech. 10: 247 zbMATHCrossRefGoogle Scholar
  18. 18.
    Knyazev A. and Neymeyr K. (2003). Efficient solution of symmetric eigenvalue problems using multigrid preconditioners in the locally optimal block conjugate gradient method. Electron. Trans. Numer. Anal. (ETNA) 15: 38–55 zbMATHMathSciNetGoogle Scholar
  19. 19.
    Levendorskii S. (1990). Asymptotic Distribution of Eigenvalues of Differential Operators. Springer, Berlin zbMATHGoogle Scholar
  20. 20.
    Livshits I. (2004). An algebraic multigrid wave-ray algorithm to solve eigenvalue problems for the Helmholtz operator. Numer. Linear Algebra Appl. 11(4): 229–339 zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Livshits I. and Brandt A. (2006). Accuracy properties of the wave-ray multigrid algorithm for Helmholtz equations. SIAM J. Sci. Comput. 28(4): 1228–1251 zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Sauter, S.: Finite Elements for Elliptic Eigenvalue Problems in the Preasymptotic Regime. Technical Report, Math. Inst., Univ. Zürich, 17, 2007Google Scholar
  23. 23.
    Sauter S.A. and Wittum G. (1992). A multigrid method for the computation of eigenmodes of closed water basins. Impact Comput. Sci. Eng. 4: 124–152 zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Schmidt F., Friese T., Zschiedrich L. and Deuflhard P. (2003). Adaptive multigrid methods for the vectorial maxwell eigenvalue problem for optical waveguide design. In: Jäger, W. and Krebs, H.-J. (eds) Mathematics. Key Technology for the Future, pp 279–292. Springer, Heidelberg Google Scholar
  25. 25.
    Strang G. and Fix G. (1973). An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs zbMATHGoogle Scholar
  26. 26.
    Weyl H. (1912). Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). Math. Ann. 71: 441–479zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institut für MathematikUniversität ZürichZurichSwitzerland
  2. 2.Institut für InformatikChristian-Albrechts-Universität KielKielGermany

Personalised recommendations