Skip to main content
Log in

Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids

  • Regular article
  • Published:
Computing and Visualization in Science

Abstract

In this paper we will present an algorithm to perform free surface flow simulations with the lattice Boltzmann method on adaptive grids. This reduces the required computational time by more than a factor of three for simulations with large volumes of fluid. To achieve this, the simulation of large fluid regions is performed with coarser grid resolutions. We have developed a set of rules to dynamically adapt the coarse regions to the movement of the free surface, while ensuring the consistency of all grids. Furthermore, the free surface treatment is combined with a Smagorinsky turbulence model and a technique for adaptive time steps to ensure stable simulations. The method is validated by comparing the position of the free surface with an uncoarsened simulation. It yields speedup factors of up to 3.85 for a simulation with a resolution of 4803 cells and three coarser grid levels, and thus enables efficient and stable simulations of free surface flows, e.g. for highly detailed physically based animations of fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bastian, P., Birken, K., Lang, S., Johannsen, K., Neuß, N., Rentz-Reichert, H., Wieners, C.: UG: A flexible software toolbox for solving partial differential equations. Comput. Vis. Sci. 1, 27–40 (1997)

    Article  MATH  Google Scholar 

  2. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. Phys. Rev. 94, 511–525 (1954)

    Article  MATH  Google Scholar 

  3. Bouzidi, M., Firadouss, M., Lallemand, P.: Momentum transfer of a lattice-boltzmann fluid with boundaries. Phys. Fluids 13, 3452–3459 (2002)

    Article  Google Scholar 

  4. Buwa, V.V., Deo, D.S., Ranade, V.V.: Eulerian–Lagrangian simulations of unsteady gas–liquid flows in bubble Columns. Int. J. Multiphase Flow (2005)

  5. Causin, P., Miglio, E., Saleri, F.: Algebraic factorizations for 3D non-hydrostatic free surface flows. Comput. Vis. Sci. 5(2), 85–94 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chu, N.S.H., Tai, C.L.: MoXi: real-time ink dispersion in absorbent paper. ACM Trans. Graph. 24(3), 504–511 (2005)

    Article  Google Scholar 

  7. Crouse, B., Krafcyzk, M., Tölke, J., Rank, E.: A LB-based approach for adaptive flow simulations. Int. J. Modern Phys. B 17, 109–112 (2003)

    Article  Google Scholar 

  8. Filippova, O., Hänel, D.: Grid refinement for lattice-BGK models. J. Comp. Phys. 147, 219–228 (1998)

    Article  MATH  Google Scholar 

  9. Frisch, U., d’Humières, D., Hasslacher, B., Lallemand, P., Pomeau, Y., Rivert, J.P.: Lattice gas hydrodynamics in two and three dimensions. Complex Syst. 1, 649–707 (1987)

    MATH  Google Scholar 

  10. Geist, R., Rasche, K., Westall, J., Schalkoff, R.: Lattice-Boltzmann Lighting. In: Proceedings of Eurographics Symposium on Rendering 2004, pp. 355–362 (2004)

  11. Geller, S., Krafczyk, M., Tölke, J., Turek, S., Hron, J.: Benchmark computations based on Lattice-Boltzmann, Finite Element and Finite Volume Methods for laminar Flows. Comput. Fluids 35, 8–9 (2006)

    Article  Google Scholar 

  12. Ginzburg, I., d’Humières, D.: Multi-reflection boundary conditions for lattice Boltzmann models. Phys. Rev. E 68:066614-1-30 (2003)

  13. Ginzburg, I., Steiner, K.: Lattice Boltzmann model for free-surface flow and its application to filling process in casting. J. Comp. Phys. 185/1 (2003)

  14. Gunstensen, A.K., Rothman, D.H., Zaleski, S., Zanetti, G.: Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 43 (1991)

  15. He, X., Luo, L.S.: A priori derivation of lattice Boltzmann equation. Phys. Rev. E 55, R6333–R6336 (1997)

    Article  Google Scholar 

  16. He, X., Luo, L.S.: Lattice Boltzmann model for the incompressible Navier–Stokes equations. J. Stat. Phys. 88, 927–944 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comp. Phys. 39, 201–225 (1981)

    Article  MATH  Google Scholar 

  18. Hou, S., Sterling, J.D., Chen, S., Doolen, G.: A lattice Boltzmann subgrid model for high Reynolds number flow. Fields Inst. Commun. 6, 151–166 (1996)

    MathSciNet  Google Scholar 

  19. Inamuro, T., Ogata, T., Tajima, S., Konishi, N.: A lattice boltzmann method for incompressible two-phase flows with large density differences. J. Comp. Phys. 198, 628–644 (2004)

    Article  MATH  Google Scholar 

  20. Körner, C., Pohl, T., Rüde, U., Thürey, N., Zeiser, T.: Parallel lattice Boltzmann methods for CFD applications. In: Bruaset, A., Tveito, A. (eds.) Numerical Solution of Partial Differential Equations on Parallel Computers, LNCSE, vol. 51, pp. 439–465. Springer, Heidelberg (2005)

  21. Körner, C., Singer, R.: Numerical Simulation of Foam Formation and Evolution with Modified Cellular Automata. Metal Foams and Porous Metal Structures, pp. 91–96 (1999)

  22. Körner, C., Thies, M., Hofmann, T., Thürey, N., Rüde, U.: Lattice Boltzmann model for free surface flow for modeling foaming. J. Stat. Phys. 121(1-2), 179–196 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Körner, C., Thies, M., Singer, R.F.: Modeling of metal foaming with lattice Boltzmann automata. Adv. Eng. Mater. (2002)

  24. Krafczyk, M.: Gitter–Boltzmann-Methoden, von der Theorie zur Anwendung. Habilitation (2001)

  25. Lallemand, P., Luo, L.S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61(6), 6546–6562 (2000)

    Article  MathSciNet  Google Scholar 

  26. Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure. ACM Trans. Graph. 23(3), 457–462 (2004)

    Article  Google Scholar 

  27. Krafczyk, M., Tölke, J., Rank, E., Schulz, M.: Two-dimensional simulation of fluid-structure interaction using lattice-Boltzmann methods. Comput. Struct. 79 (2001)

  28. Mei, R., Luo, L.S., Shyy, W.: An accurate curved boundary treatment in the lattice Boltzmann method. J. Comp. Phys. 155, 307–330 (1999)

    Article  MATH  Google Scholar 

  29. Monaghan, J.: Smoothed particle hydrodynamics. Ann. Rev. Astron. Phys. 30, 543–574 (1992)

    Article  Google Scholar 

  30. Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer animation, pp. 154–159 (2003)

  31. Pohl, T., Kowarschik, M., Wilke, J., Iglberger, K., Rüde, U.: Optimization and Profiling of the Cache Performance of Parallel Lattice Boltzmann Codes in 2D and 3D. Technical Report 3–8, Germany (2003)

  32. Pohl, T., Thürey, N., Deserno, F., Rüde, U., Lammers, P., Wellein, G., Zeiser, T.: Performance evaluation of parallel large-scale lattice Boltzmann applications on three supercomputing architectures. In: Proceedings of supercomputing conference 2004 (2004)

  33. Qian, Y.H., d’Humières, D., Lallemand, P.: Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17(6), 479–484 (1992)

    Article  MATH  Google Scholar 

  34. Rohde, M., Kandhai, D., Derksen, J.J., van den Akker, H.E.A.: A generic mass conservative local grid refinement technique for lattice-Boltzmann schemes. Int. J. Num. Methods Fluids 51, 439 (2006)

    Article  MATH  Google Scholar 

  35. Shan, X., Chen, H.: Simulation of non-ideal gases and liquid–gas phase transitiions by the lattice Boltzmann equation. Phys. Rev. E 49, 2941–2948 (1994)

    Article  Google Scholar 

  36. Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Wea. Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  37. Stam, J.: Stable Fluids. In: Proceedings of ACM SIGGRAPH, pp. 121–128 (1999)

  38. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  39. Sussman, M.: A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. J. Comp. Phys. 187/1 (2003)

  40. Swift, M.R., Orlandi, E., Osborn, W.R., Yeomans, J.M.: Lattice Boltzmann simulations of liquid–gas and binary fluid systems. Phys. Rev. E 54, 5041–5052 (1996)

    Article  Google Scholar 

  41. Thuerey, N.: A lattice Boltzmann method for single-phase free surface flows in 3D. Masters Thesis, Department of Computer Science 10, System-Simulation, University of Erlangen-Nuremberg (2003)

  42. Thürey, N., Rüde, U.: Webpage: stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids. http://www10.informatik.uni-erlangen.de/~sinithue/sfsflbmacg/

  43. Thürey, N., Körner, C., Rüde, U.: Interactive free surface fluids with the lattice Boltzmann method, Technical Report 05–4. Technical Report, Department of Computer Science 10, System Simulation (2005)

  44. Thürey, N., Pohl, T., Rüde, U., Oechsner, M., Körner, C.: Optimization and stabilization of LBM free surface flow simulations using adaptive parameterization. Comput. Fluids 35(8–9), 934–939 (2006)

    Article  Google Scholar 

  45. Tölke, J., Freudiger, S., Krafcyzk, M.: An adaptive scheme using hierarchical grids for lattice Boltzmann multi-phase flow simulations. Comput. Fluids 17, 109–112 (2003)

    Google Scholar 

  46. Tölke, J., Krafcyzk, M., Schulz, M., Rank, E.: Lattice Boltzmann simulations of binary fluid flow through porous media. Philos. Trans. R. Soc. Lond. A 360, 535–545 (2002)

    Article  MATH  Google Scholar 

  47. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, London (2001)

    MATH  Google Scholar 

  48. Veldhuizen, B., Langlotz, J., et al.: Blender open source 3D graphics creation (2005) http://www.blender3d.org

  49. Verberg, R., Ladd, A.J.C.: Accuracy and stability of a lattice-boltzmann model with subgrid scale boundary conditions. Phys. Rev. E 65(016701-1-6) (2001)

  50. Wang, C., Wang, Z., Xia, T., Peng, Q.: Real-time snowing simulation. The Visual Computer, pp. 315–323 (2006)

  51. Wei, X., Li, W., M"uller, K., Kaufman, A.E.: The lattice-Boltzmann method for simulating gaseous phenomena. IEEE Trans. Vis. Comput. Graph. 10(2), 164–176 (2004)

    Article  Google Scholar 

  52. Wei, X., Zhao, Y., Fan, Z., Li, W., Yoakum-Stover, S., Kaufman, A.: Natural phenomena: blowing in the wind. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on computer animation, pp. 75–85 (2003)

  53. Wittum, G.: Multi-grid methods for Stokes and Navier–Stokes equations with transforming smoothers: algorithms and numerical results. Numer. Math. 54, 543–563 (1989)

    Article  MathSciNet  Google Scholar 

  54. Yu, D., Mei, R., Luo, L.S., Shyy, W.: Viscous flow computations with the method of lattice Boltzmann equation. Prog. Aerospace Sci. 39(5) (2003)

  55. Yu, D., Mei, R., Shyy, W.: A multi-block lattice Boltzmann method for viscous fluid flows. Int. J. Numer. Methods Fluids 39 (2002)

  56. Yu, H., Girimaji, S., Luo, L.S.: Lattice Boltzmann simulations of decaying homogeneous isotropic turbulence. Phys. Rev. E 71 (2005)

  57. Yu, H., Luo, L.S., Girimaji, S.: LES of turbulent square jet flow using an MRT lattice Boltzmann model. Comput. Fluids 25, 957–965 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Rüde.

Additional information

Communicated by G. Wittum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thürey, N., Rüde, U. Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids. Comput. Visual Sci. 12, 247–263 (2009). https://doi.org/10.1007/s00791-008-0090-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-008-0090-4

Keywords

Navigation