Skip to main content
Log in

Adaptive finite element simulation of ventricular fibrillation dynamics

  • Regular article
  • Published:
Computing and Visualization in Science

Abstract

The paper communicates simulation results (computations and visualizations) for the dynamics of ventricular fibrillation caused by irregular excitation in the frame of the monodomain model with an action potential model due to Aliev–Panfilov for a human 3D geometry. The numerical solution of this challenging multiscale reaction–diffusion problem is attacked by algorithms which are fully adaptive in both space and time (code library KARDOS). The obtained results clearly demonstrate an accurate resolution of the cardiac potential during the excitation and the plateau phases (in the regular cycle) as well as after a reentrant excitation (in the irregular cycle).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amira home page. http://amira.zib.de/

  2. KARDOS home page. http://www.zib.de/Numerik/numsoft/kardos

  3. Aliev, R.R., Panfilov, A.V.: A simple two-variable model of cardiac excitation. Chaos Solitons Fract. 7(3), 293–301 (1996)

    Article  Google Scholar 

  4. Colli Franzone, P., Deuflhard, P., Erdmann, B., Lang, J., Pavarino, L.F.: Adaptivity in space and time for reaction–diffusion systems in electrocardiology. SIAM J. Sci. Comp. 28, 942–962 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Erdmann, B., Lang, J., Roitzsch, R.: Kardos user’s guide. ZIB Report ZR-02-42, Zuse Institute Berlin (ZIB) (2002)

  6. Lang, J.: Adaptive multilevel solution of nonlinear parabolic PDE Systems. Theory, algorithm, and applications. In: LNCSE, vol. 16. Springer, Heidelberg (2000)

  7. Lang, J.: ROS3PL—a third-order stiffly accurate Rosenbrock solver designed for partial differential algebraic equations of index one (2006, private communication)

  8. LeGrice, I., Hunter, P., Young, A., Smaill, B.: The architecture of the heart: a data-based model. Philos. Trans. R. Soc. 359(1783), 1217–1232 (2001)

    Article  MATH  Google Scholar 

  9. Rogers, J.M., McCulloch, A.D.: A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Eng. 41, 743–757 (1994)

    Article  Google Scholar 

  10. Stalling, D., Westerhoff, M., Hege, H.C.: Amira: A highly interactive system for visual data analysis. In: Hansen, C., Johnson, C. (eds.) The Visualization Handbook, chap. 38, pp. 749–767. Elsevier, Amsterdam (2005)

  11. Sundnes, J., Lines, G.T., Cai, X., Nielsen, B.F., Mardal, K.A., Tveito, A.: Computing the electrical activity in the heart. In: Monographs in Computational Science and Engineering, vol. 1. Springer, Heidelberg (2006)

  12. van der Vorst, H.A.: BI–CGSTAB: a fast and smoothly converging variant of BI–CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. 13, 631–644 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodo Erdmann.

Additional information

Communicated by G. Wittum.

Supported by the DFG Research Center Matheon “Mathematics for key technologies” in Berlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deuflhard, P., Erdmann, B., Roitzsch, R. et al. Adaptive finite element simulation of ventricular fibrillation dynamics. Comput. Visual Sci. 12, 201–205 (2009). https://doi.org/10.1007/s00791-008-0088-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-008-0088-y

Keywords

Navigation