Skip to main content
Log in

Smoothed aggregation multigrid for a Stokes problem

  • Regular article
  • Published:
Computing and Visualization in Science

Abstract

We discuss advantages of using algebraic multigrid based on smoothed aggregation for solving indefinite linear problems. The ingredients of smoothed aggregation are used to construct a black-box monolithic multigrid method with indefinite coarse problems. Several techniques enforcing inf–sup stability conditions on coarse levels are presented. Numerical experiments are designed to support recent stability results for coupled algebraic multigrid. Comparison of the proposed multigrid preconditioner with other methods shows its robust behaviour even for very elongated geometries, where the pressure mass matrix is no longer a good preconditioner for the pressure Schur complement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams M.F. (2004). Algebraic multigrid methods for constrained linear systems with applications to contact problems in solid mechanics. Numer. Linear Algebra Appl. 11: 141–153

    Article  MathSciNet  MATH  Google Scholar 

  2. Braess D. and Sarazin R. (1997). An efficient smoother for the Stokes problem. Appl. Numer. Math. 23: 3–19

    Article  MathSciNet  MATH  Google Scholar 

  3. Brezina M. and Vaněk P. (1999). A black-box iterative solver based on a two-level Schwarz method. Computing 63(3): 233–263

    Article  MathSciNet  MATH  Google Scholar 

  4. Cui M.R. (2004). Analysis of iterative algorithms of Uzawa type for saddle point problems. Appl. Numer. Math. 50: 133–146

    Article  MathSciNet  MATH  Google Scholar 

  5. Dobrowolski M. (2003). On the LBB constant on stretched domains. Math. Nachr. 254–255: 64–67

    Article  MathSciNet  Google Scholar 

  6. Elman, H.C.: Preconditioning strategies for models of incompressible flow. Research report CS-TR no.4543/ UMIACS TR no.2003-111, University of Maryland, November (2003)

  7. Elman H.C., Silvester D.J. and Wathen A.J. (2002). Performance and analysis of saddle point preconditioners for the discrete steady-state Navier–Stokes equations. Numer. Math. 90: 665–688

    Article  MathSciNet  MATH  Google Scholar 

  8. Elman H.C., Howle V.E., Shadid J.N. and Tuminaro R.S. (2003). A parallel block multi-level preconditioner for the 3D incompressible Navier–Stokes equations. J. Comput. Phys. 187: 504–523

    Article  MATH  Google Scholar 

  9. Franca L. and Stenberg R. (1991). Error analysis of some GLS methods for elasticity equations. SIAM J. Numer. Anal. 28: 1680–1697

    Article  MathSciNet  MATH  Google Scholar 

  10. Griebel M., Neunhoffer T. and Regler H. (1998). Algebraic multigrid methods for the solution of the Navier–Stokes equations in complicated geometries. Int. J. Numer. Methods Fluids 26: 281–301

    Article  MATH  Google Scholar 

  11. Loghin D. and Wathen A.J. (2003). Schur complement preconditioning for elliptic systems of partial differential equations. Numer. Linear Algebra Appl. 10: 423–443

    Article  MathSciNet  MATH  Google Scholar 

  12. Picasso M. and Rappaz J. (2001). Stability of time-splitting schemes for the Stokes problem with stabilized finite elements. Numer. Methods Partial Differ. Equ. 17(6): 632–656

    Article  MathSciNet  MATH  Google Scholar 

  13. Powell, C., Silvester, D.: Black-box preconditioning for mixed formulation of self-adjoint elliptic PDEs, challenges in scientific computing—CISC 2002, 268–285, Lecture Notes in Computer Science Engineering, vol. 35. Springer, Berlin (2003)

  14. Silvester D., Elman H., Kay D. and Wathen A. (2001). Efficient preconditioning of the linearized Navier–Stokes equations for incompressible flow. J. Comput. Appl. Math. 128: 261–279

    Article  MathSciNet  MATH  Google Scholar 

  15. Schöberl J. and Zulehner W. (2003). On Schwarz-type smoothers for saddle point problems. Numer. Math. 95: 377–399

    Article  MathSciNet  MATH  Google Scholar 

  16. Stüben K. (2001). A review of algebraic multigrid. Comput. Appl. Math. 128: 281–309

    Article  MathSciNet  MATH  Google Scholar 

  17. Vaněk P., Brezina M. and Mandel J. (2001). Convergence of algebraic multigrid based on smoothed aggregation. Numer. Math. 88(3): 559–579

    Article  MathSciNet  MATH  Google Scholar 

  18. Verfürth R. (1984). Error estimates for a mixed finite element approximation of the Stokes problem. RAIRO Anal. Numer. 18: 175–182

    MathSciNet  MATH  Google Scholar 

  19. Wabro M. (2004). Coupled algebraic multigrid methods for the Oseen problem. Comput. Vis. Sci. 7: 141–151

    MathSciNet  MATH  Google Scholar 

  20. Webster R. (1994). An algebraic multigrid solver for Navier–Stokes problems. Int. J. Numer. Methods Fluids 18: 761–780

    Article  MATH  Google Scholar 

  21. Wesseling P. and Oosterlee C.W. (2001). Geometric multigrid with applications to computational fluid dynamics. J. Comput. Appl. Math. 128: 311–334

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleš Janka.

Additional information

Communicated by C. Oosterlee.

Supported by the Swiss CTI grant no. 6437.1 IWS-IW, in collaboration with Alcan-Péchiney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janka, A. Smoothed aggregation multigrid for a Stokes problem. Comput. Visual Sci. 11, 169–180 (2008). https://doi.org/10.1007/s00791-007-0068-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-007-0068-7

Keywords

Navigation