Skip to main content
Log in

Fokker–Planck approximation of the master equation in molecular biology

  • Regular article
  • Published:
Computing and Visualization in Science

Abstract

The master equation of chemical reactions is solved by first approximating it by the Fokker–Planck equation. Then this equation is discretized in the state space and time by a finite volume method. The difference between the solution of the master equation and the discretized Fokker–Planck equation is analyzed. The solution of the Fokker–Planck equation is compared to the solution of the master equation obtained with Gillespie’s Stochastic Simulation Algorithm (SSA) for problems of interest in the regulation of cell processes. The time dependent and steady state solutions are computed and for equal accuracy in the solutions, the Fokker–Planck approach is more efficient than SSA for low dimensional problems and high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson D.G., Serrin J. (1967) Local behavior of solutions of quasilinear parabolic equations. Arch. Rat. Mech. Anal. 25, 81–122

    MATH  MathSciNet  Google Scholar 

  2. Benzer S. (1953) Induced synthesis of enzymes in bacteria analyzed at the cellular level. Biochim. Biophys. Acta 11, 383–395

    Article  Google Scholar 

  3. Berg O.G. (1978) A model for the statistical fluctuations of protein numbers in a microbial population. J. Theor. Biol. 71, 587–603

    Article  Google Scholar 

  4. Berg O.G. (1978) On diffusion-controlled dissociation. J. Chem. Phys. 31, 47–57

    Article  Google Scholar 

  5. Cao Y., Gillespie D., Petzold L. (2005) Multiscale stochastic simulation algorithm with stochastic partial equilibrium assumption for chemically reacting systems. J. Comput. Phys. 206, 395–411

    Article  MATH  MathSciNet  Google Scholar 

  6. Dieudonné J. (1969). Foundations of modern analysis, Academic, New York

    MATH  Google Scholar 

  7. Elf J., Berg O.G., Ehrenberg M. (2001) Comparison of repressor and transcriptional attenuator systems for control of amino acid biosynthetic operons. J. Mol. Biol. 313, 941–954

    Article  Google Scholar 

  8. Elf J., Paulsson J., Berg O.G., Ehrenberg M. (2003) Near-critical phenomena in intracellular metabolite pools. Biophys. J. 84, 154–170

    Article  Google Scholar 

  9. Elowitz M.B., Surette M.G., Wolf P.-E., Stock J.B., Leibler S. (1999) Protein mobility in the cytoplasm of Escherichia coli. J. Bacteriol. 181, 197–203

    Google Scholar 

  10. Érdi P., Tóth J. (1988) Mathematical models of chemical reactions. Princeton University Press, Princeton

    Google Scholar 

  11. Ferm, L., Lötstedt, P., Sjöberg, P.: Conservative solution of the Fokker–Planck equation for stochastic chemical reactions. BIT (in press, 2006)

  12. Fersht A. (1998) Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. W. H. Freeman & Co, New York

    Google Scholar 

  13. Gardiner C.W. (1985) Handbook of stochastic methods. Springer, Berlin Heidelberg New York

    Google Scholar 

  14. Gardner T.S., Cantor C.R., Collins J.J. (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342

    Article  Google Scholar 

  15. Gilbarg D., Trudinger N.S. (1977) Elliptic partial differential equations of second order. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  16. Gillespie D.T. (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434

    Article  MathSciNet  Google Scholar 

  17. Greenbaum A. (1997) Iterative methods for solving linear systems. SIAM, Philadelphia

    MATH  Google Scholar 

  18. Hairer E., Nørsett S.P., Wanner G. (1993) Solving ordinary differential equations, nonstiff problems. 2nd edn., Springer, Berlin Heidelberg New York

    Google Scholar 

  19. Haseltine E.L., Rawlings J.B. (2002) Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J. Chem. Phys. 117, 6959–6969

    Article  Google Scholar 

  20. John F. (1980) Partial differential equations. 3rd edn., Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  21. Kærn M., Elston T.C., Blake W.J., Collins J.J. (2005) Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet. 6, 451–464

    Article  Google Scholar 

  22. van Kampen N.G. (1992) Stochastic processes in physics and chemistry. Elsevier, Amsterdam

    Google Scholar 

  23. Larsen R.J., Marx M.L. (1986) An introduction to mathematical statistics and its applications. 2nd edn., Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  24. Lehoucq R.B., Sorensen D.C., Yang C. (1998) ARPACK users’ guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM, Philadelphia

    Google Scholar 

  25. Lötstedt P., Söderberg S., Ramage A., Hemmingsson-Frändén L. (2002) Implicit solution of hyperbolic equations with space-time adaptivity. BIT 42, 134–158

    Article  MATH  MathSciNet  Google Scholar 

  26. MATLAB: The MathWorks, Inc., Natick, MA, USA, http://www.mathworks.com

  27. Novick A., Weiner M. (1957) Enzyme induction as an all-or-none phenomenon. Proc. Natl. Acad. Sci. USA 43, 553–566

    Article  Google Scholar 

  28. Sleijpen G.L.G., van der Vorst H.A. (1996) A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17, 401–425

    Article  MATH  MathSciNet  Google Scholar 

  29. van der Vorst H.A. (1992) Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644

    Article  MATH  Google Scholar 

  30. Xie X.S. (2002) Single-molecule approach to dispersed kinetics and dynamic disorder: Probing conformational fluctuation and enzymatic dynamics. J. Chem. Phys. 117, 11024–11032

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Lötstedt.

Additional information

Communicated by G. Wittum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sjöberg, P., Lötstedt, P. & Elf, J. Fokker–Planck approximation of the master equation in molecular biology. Comput. Visual Sci. 12, 37–50 (2009). https://doi.org/10.1007/s00791-006-0045-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-006-0045-6

Keywords

Navigation