Skip to main content
Log in

A level set based finite element algorithm for the simulation of dendritic growth

  • Regular article
  • Published:
Computing and Visualization in Science

Abstract

Dendritic growth is a nonlinear process, which falls into the category of self-organizing pattern formation phenomena. It is of great practical importance, since it appears frequently and, in the case of alloys, affects the engineering properties of the resulting solid. We describe a new finite element algorithm for the two–dimensional Stefan problem, where the free boundary is represented as a level set. This allows to handle topological changes of the free boundary. The accuracy of the method is verified and several numerical simulations, including topological changes of the free boundary, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bänsch, E.: Local mesh refinement in 2 and 3 dimensions, IMPACT Comput. Sci. Eng., 181–191 (1991)

  2. Caginalp, G.: Length scales in phase transition models: Phase field, Cahn-Hillard and blow-up problems. In: Pattern formation: symmetry methods and applications. Chadam, J., Golubitsky, M., Langford, W., Wetton, B. (eds.), Fields Institute for Research in Mathematical Sciences, Waterloo, Canada, 1996, American Mathematical Society, Providence, Rhode Island, pp. 67–83

  3. Chen, Y.-G., Giga, Y., Goto, S.: Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differ. Geom. 33, 749–786 (1991)

    Google Scholar 

  4. Chopp, D.L.: Computing minimal surfaces via level set curvature flow. Journal of Computational Physics 106, 77–91 (1993)

    Article  MathSciNet  Google Scholar 

  5. Crandall, M.G., Lions, P.L.: Convergent difference schemes for nonlinear parabolic equations and mean curvature motion. Numer. Math. 75, 17–41 (1996)

    Article  MathSciNet  Google Scholar 

  6. Deckelnick, K.: Error analysis for a difference scheme approximating mean curvature flow, preprint. Mathematische Fakultät Freiburg, 1998

  7. Deckelnick, K., Dziuk, G.: Convergence of numerical schemes for the approximation of level set solutions to the mean curvature flow. Preprint 17-00, Mathematische Fakultät Freiburg, 2000

  8. Deckelnick, K., Dziuk, G.:, Numerical approximation of mean curvature flow of graphs and level sets. Preprint 04-01, Mathematische Fakultät Freiburg, 2001

  9. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)

    Article  MathSciNet  Google Scholar 

  10. Dziuk, G.: Numerical schemes for the mean curvature flow of graphs. In: Argoul, P., Frémond, M., Nguyen, Q.S. (eds.), IUTAM Symposium on Variations of Domains and Free-Boundary Problems in Solid Mechanics. pp. 63–70, 1999

  11. Elliott, C.M.: Approximation of curvature dependent interface motion. Tech. Rep. 96/21, Centre for Mathematical Analysis and Its Applications, University of Sussex, Falmer, Brighton BN1 9QH, UK, 1996

  12. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems i: A linear model problem. SIAM J. Numer. Anal. 28, 43–77 (1991)

    Article  MathSciNet  Google Scholar 

  13. Evans, L.C., Spruck, J.: Motion of level sets by mean curvature I. J. Differ. Geom. 33, 635–681 (1991)

    Google Scholar 

  14. Evans, L.C., Spruck, J.: Motion of level sets by mean curvature II. Trans. Amer. Math. Soc. 330, 321–333 (1992)

    Article  MathSciNet  Google Scholar 

  15. Evans, L.C., Spruck, J.: Motion of level sets by mean curvature III. J. Geom. Ana. 2, 121–150 (1992)

    Article  Google Scholar 

  16. Evans, L.C., Spruck, J.: Motion of level sets by mean curvature IV. J. Geom. Ana. 5, 79–116 (1995)

    Google Scholar 

  17. Fried, M.: Niveauflächen zur Berechnung zweidimensionaler Dendrite, PhD thesis. Institut für Angewandte Mathematik, Universität Freiburg, April 1999

  18. Fried, M., Veeser, A.: Simulation and numerical analysis of dendritic growth. In: Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems. Fiedler, B. (ed.), Springer 2001

  19. Gage, M.: Evolving plane curves by curvature in relative geometries. Duke Math. J. 72, 441–466 (1993)

    Article  MathSciNet  Google Scholar 

  20. Giga, Y., Goto, S., Ishii, H.: Global existence of weak solutions for interface equations coupled with diffusion equations. Siam J. Math. Anal. 23, 821–835 (1992)

    Article  MathSciNet  Google Scholar 

  21. Glicksman, M.E., Marsh, S.P.: The dendrite. In: Handbook of Crystal Growth. Hurle, D.T.J. (ed.), Vol. l, Amsterdam, London, New York, Tokyo: North Holland 1993

  22. Gurtin, M.E.: Thermomechanics of evolving phase boundaries in the plane. Oxford: Clarendon Press 1993

  23. Gurtin, M.E., Soner, H.M.: Some remarks on the Stefan problem with surface structure. Quarterly of Applied Mathematics 52, 291–303 (1992)

    MathSciNet  Google Scholar 

  24. Huisken, G.: Non-parametric mean curvature evolution with boundary conditions. Journal of Differential Equations 77, 369-378 (1989)

    Article  MathSciNet  Google Scholar 

  25. Langer, J.S.: Instabilities and pattern formation in crystal growth. Reviews of Modern Physics 52, 1–28 (1980)

    Article  Google Scholar 

  26. Lieberman, G.: The first initial-boundary value problem for quasilinear second order parabolic equations. Ann. Sci. Norm. Sup. Pisa Ser. IV., Ser. 13, 347–387 (1986)

    MathSciNet  Google Scholar 

  27. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  Google Scholar 

  28. Paolini, M.: An efficient algorithm for computing anisotropic evolution by mean curvature. In: Damlamian, A. (ed.), Proceedings of the international Conference on curvature flows and related topics held in Levico, Italy, June 27–July 2, 1994. Tokyo: Gakkotosho. GAKUTO Int. Ser., Math. Sci. Appl. 5, 1995, pp. 199–213

  29. Paolini, M., Verdi, C.: Asymptotic and numerical analyses of the mean curvature flow with a space-dependent relaxation parameter. Asymptotic Anal. 5, 553–574 (1992)

    MathSciNet  Google Scholar 

  30. Schmidt, A.: Die Berechnung dreidimensionaler Dendriten mit Finiten Elementen. PhD thesis, Universität Freiburg, 1993

  31. Schmidt, A.: Computation of three dimensional dendrites with finite elements. Journal of Computational Physics 125, 293–312 (1996)

    Article  Google Scholar 

  32. Schmidt, A., Siebert, K.G.: ALBERT – Software for scientific computations and applications. Acta Math. Univ. Comenianae 70, 105–122 (2001)

    Google Scholar 

  33. Sethian, J.A.: Level Set Methods. Cambridge University Press, 1996

  34. Sethian, J.A., Strain, J.: Crystal growth and dendrite solidification. J. Comp. Phys. 98, 231–253 (1992)

    Article  MathSciNet  Google Scholar 

  35. Strain, J.: Fast tree-based redistancing for level set computations. J. Comp. Phys. 152, 648–666 (1999)

    Article  MathSciNet  Google Scholar 

  36. Sussmann, M., Smereka, P., Osher, S.J.: A level set method for computing solutions to incompressible two-phase flow. Journal of Computational Physics 114, 146–159 (1994)

    Article  Google Scholar 

  37. Veeser, A.: Globale Existenz von Graphen unter inhomogenen Krümmungsfluss bei Dirichlet-Randbedingungen, Master’s thesis. Institut für Angewandte Mathematik, Universitat Freiburg, December 1993

  38. Visintin, A.: Models of phase transitions. Vol. 28 of Progress in Nonlinear Differential Equations and Their Applications, Boston: Birkhäuser 1996

  39. Walkington, N.J.: Algorithms for computing motion by mean curvature. SIAM J. Numer. Anal. 33, 2215–2238 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Fried.

Additional information

Communicated by

G. Wittum

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fried, M. A level set based finite element algorithm for the simulation of dendritic growth. Comput. Visual Sci. 7, 97–110 (2004). https://doi.org/10.1007/s00791-004-0141-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-004-0141-4

Keywords

Navigation