Skip to main content
Log in

A parallel, load-balanced MHD code on locally-adapted, unstructured grids in 3d

  • Regular article
  • Published:
Computing and Visualization in Science

Abstract

An efficient parallel code for the approximate solution of initial boundary value problems for hyperbolic balance laws is introduced. The method combines three modern numerical techniques: locally-adaptive upwind finite-volume methods on unstructured grids, parallelization based on non-overlapping domain decomposition, and dynamic load balancing. Key ingredient is a hierarchical mesh in three space dimensions.

The proposed method is applied to the equations of compressible magnetohydrodynamics (MHD). Results for several testproblems with computable exact solution and for a realistic astrophysical simulation are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonfiglioli, A., Deconinck, H.: Multidimensional upwind schemes for the 3d Euler equations on unstructured tetrahedral meshes. In: Deconinck, H., Korren, B. (eds.), Euler and Navier–Stokes solvers using multi-dimensional upwind schemes and multigrid acceleration, Notes Numer. Fluid Mech. No. 57, Vieweg, Wiesbaden, 1997, pp. 141–185

  2. Cabannes, H.: Theoretical magnetofluiddynamics. Applied Mathematics and Mechanics, Vol. 13, New York: Academic Press 1970

  3. Cockburn, B, Karniadakis, G.E., Shu, C.W.: The development of discontinuous Galerkin methods. In: Cockburn, B., Karniadakis, G.E., Shu, C.W. (eds.), Discontinuous Galerkin methods. Theory, computation and applications. Lect. Notes Comput. Sci. Eng., Vol. 11, Berlin: Springer 2000, 1st international symposium on DGM, Newport, RI, USA, May 24–26, 1999, pp. 3–50

  4. Dedner, A: Solving the system of radiation magnetohydrodynamics for solar physical simulations in 3D. PhD thesis Freiburg 2003. (http://www.freidok.uni-freiburg.de/volltexte/1098)

  5. Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer, T., Wesenberg, M.: Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175(2), 645–673 (2002), DOI:10.1006/jcph.2001.6961

    Article  MathSciNet  Google Scholar 

  6. Dedner, A., Rohde, C., Wesenberg, M.: Efficient higher–order finite volume schemes for (real gas) magnetohydrodynamics. In: Hou, T., Tadmor, E. (eds.), Hyperbolic Problems: Theory, Numerics, Applications, Springer 2003, Ninth International Conference on Hyperbolic Problems, Pasadena, March 2002

  7. Dedner, A., Wesenberg, M.: Numerical methods for the real gas MHD equations. In: Freistühler, H., Warnecke, G. (eds.), Hyperbolic Problems: Theory, Numerics, Applications (Basel), International Series of Numerical Mathematics, Vol. 140, Birkhäuser 2001, Eighth International Conference in Magdeburg, February/March 2000, pp. 287–296

  8. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods, Solution of equations in ℝn (Part 3). In: Ciarlet, P.G., Lions, J.L. (eds.), Techniques of scientific computing (Part 3), Handbook of numerical analysis, Vol. 7, Amsterdam: North-Holland/Elsevier 2000, pp. 713–1020

  9. Fey, M.: Multidimensional upwinding. I: The method of transport for solving the Euler equations. J. Comput. Phys. 143(1), 159–180 (1998), Art. No. CP985958

    MathSciNet  Google Scholar 

  10. GRAPE, GRAphics Programming Environment, http://www.mathematik.uni-freiburg.de/IAM/Research/grape/ GENERAL/index.html

  11. Greenberg, J.M., LeRoux, A.-Y.: A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33, 1–16 (1996)

    Article  MathSciNet  Google Scholar 

  12. Hansbo, P., Johnson, C.: Adaptive streamline diffusion methods for compressible flow using conservation variables. Comput. Methods Appl. Mech. Eng. 87(2/3), 267–280 (1991)

  13. Karypis, G., Kumar, V.: Metis, a software package for partitioning unstructured graphs, unstructured meshes, and computing fill-reducing orderings of sparse matrices, version 3.0.3, University of Minnesota (1997), http://www-users.cs.umn.edu/karypis/metis/index.html

  14. Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160(1), 241–282 (2000), DOI:10.1006/jcph.2000.6459

    Article  MathSciNet  Google Scholar 

  15. Nessyahu, H., Tadmor, E.: Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87(2), 408–463 (1990)

    Article  MathSciNet  Google Scholar 

  16. Noelle, S.: The MoT–ICE: A new high–resolution wave–propagation algorithm for multidimensional systems of conservation laws based on Fey’s method of transport. J. Comput. Phys. 164(2), 283–334 (2000), DOI:10.1006/jcph.2000.6598

    Article  MathSciNet  Google Scholar 

  17. Rempel, M.: Struktur und Ursprung starker Magnetfelder am Boden der solaren Konvektionszone. PhD thesis, Georg–August–Universität, Göttingen, June 2001, http://webdoc.sub.gwdg.de//diss/2001/rempel/index.html

  18. Ryu, D., Jones, T.W.: Numerical magnetohydrodynamics in astrophysics: algorithms and tests for one-dimensional flow. Astrophys. J. 442, 228–258 (1995)

    Article  Google Scholar 

  19. Schloegel, K., Karpys, G., Kumar, V.: Multilevel diffusion schemes for repartitioning adaptive meshes. Technical report 97-013, University of Minnesota, 1997

  20. Schmidt, A., Siebert, K.G.: Albert – software for scientific computations and applications. Acta Math. Univ. Comen., New Ser. 70(1), 105–122(2001)

    Google Scholar 

  21. Schupp, B.: Entwicklung eines effizienten Verfahrens zur Simulation kompressibler Strömungen in 3D auf Parallelrechnern. PhD thesis, Albert–Ludwigs–Universität, Mathematische Fakultät, Freiburg, Dezember 1999, http://www.freidok.uni–freiburg.de/volltexte/68

  22. Tóth, G.: The ∇·B=0 constraint in shock–capturing magnetohydrodynamics codes. J. Comput. Phys. 161, 605–652 (2000), DOI:10.1006/jcph.2000.6519

    Article  MathSciNet  Google Scholar 

  23. Wesenberg, M.: Efficient MHD Riemann solvers for simulations on unstructured triangular grids. J. Numer. Math. 10, 37–71 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Dedner.

Additional information

Communicated by

G. Wittum

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dedner, A., Rohde, C., Schupp, B. et al. A parallel, load-balanced MHD code on locally-adapted, unstructured grids in 3d. Comput. Visual Sci. 7, 79–96 (2004). https://doi.org/10.1007/s00791-004-0140-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-004-0140-5

Keywords

Navigation