Skip to main content
Log in

Coupled algebraic multigrid methods for the Oseen problem

  • Regular article
  • Published:
Computing and Visualization in Science

Abstract

We provide a concept combining techniques known from geometric multigrid methods for saddle point problems (such as smoothing iterations of Braess- or Vanka-type) and from algebraic multigrid (AMG) methods for scalar problems (such as the construction of coarse levels) to a coupled algebraic multigrid solver. ‘Coupled’ here is meant in contrast to methods, where pressure and velocity equations are iteratively decoupled (pressure correction methods) and standard AMG is used for the solution of the resulting scalar problems. To prove the efficiency of our solver experimentally, it is applied to finite element discretizations of “real life” industrial problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becker, R.: An adaptive finite element method for the incompressible Navier–Stokes equations on time-dependent domains. Preprint 95-44, SFB 359, University Heidelberg, 1995

  2. Bercovier, M., Pironneau, O.: Error estimates for finite element method solution of the Stokes problem in the primitive variables. Num. Math. 33, 211–224 (1979)

    Article  MathSciNet  Google Scholar 

  3. Braess, D., Sarazin, R.: An efficient smoother for the Stokes problem. Appl. Numer. Math. 23, 3–20 (1997)

    Article  MathSciNet  Google Scholar 

  4. Brandt, A., McCormick, S., Ruge, J.: Algebraic multigrid (AMG) for sparse matrix equations. In: Evans, D.J. (ed.), Sparsity and its applications. Cambridge: Cambridge University Press 1984, pp. 257–284

  5. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer series in computational mathematics. New York: Springer 1991

  6. Franca, L.P., Hughes, T.J.R., Stenberg, R.: Stabilized finite element methods for the Stokes problem. In: Gunzburger, M., Nicolaides, R.A. (eds.), Incompressible Computational Fluid Dynamics, Chapt. 4, Cambridge: Cambridge University Press 1993, pp. 87–107

  7. Franca, L.P., Madureira, A.L.: Element diameter free stability parameters for stabilized methods applied to fluids. Comp. Meth. Appl. Mech. Eng. 105, 395–403 (1993)

    Article  MathSciNet  Google Scholar 

  8. Franca, L.P., Stenberg, R.: Error analysis of some Galerkin least squares methods for the elasticity equations. SIAM J. Numer. Anal. 28(6), 1680–1697 (1991)

    Article  MathSciNet  Google Scholar 

  9. Griebel, M., Neunhoeffer, T., Regler, H.: Algebraic multigrid methods for the solution of the Navier–Stokes equations in complicated geometries. Int. J. Numer. Methods Fluids, 26, 281–301 (1998)

    Article  Google Scholar 

  10. Kickinger, F.: Automatic microscaling mesh generation. Institutsbericht No. 525, Department of Mathematics, Johannes Kepler University, Linz, 1997

  11. Kickinger, F.: Algebraic multigrid for discrete elliptic second-order problems. In: Hackbusch, W., Wittum, G., Nieminen, R. (eds.), Multigrid Methods V, Proceedings of the 5th European Multigrid conference, held in Stuttgart, Germany, 1996, Vol. 3 of Lect. Notes Comput. Sci. Eng. Berlin: Springer 1998, pp. 157–172

  12. Patankar, S.: Numerical heat transfer and fluid flow. Series in Computational Methods in Mechanics and Thermal Sciences. New York: McGraw-Hill 1980

  13. Pironneau, O.: Finite Element Methods for Fluids. Chichester: John Wiley & Sons 1989

  14. Rannacher, R.: Finite Element Methods for the Incompressible Navier–Stokes Equations. In: Galdi, G.P., Heywood, J.G., Rannacher, R. (eds.), Fundamental directions in mathematical fluid mechanics. Basel: Birkhäuser 2000, pp. 191–293

  15. Raw, M.J.: A coupled algebraic multigrid method for the 3D Navier–Stokes equations. In: Hackbusch, W., Wittum, G. (eds.), Fast solvers for flow problems. Proceedings of the tenth GAMM-Seminar, held in Kiel, Germany, 1994, Vol. 49 of Notes Numer. Fluid Mech. Wiesbaden: Vieweg 1995, pp. 204–215

  16. Reitzinger, S.: Algebraic Multigrid Methods for Large Scale Finite Element Equations. PhD thesis, Johannes Kepler University, Linz, 2001

  17. Ruge, J.W., Stüben, K.: Algebraic multigrid (AMG). In: McCormick, S. (ed.), Multigrid Methods, Vol. 5 of Frontiers in Applied Mathematics. SIAM 1986, pp. 73–130

  18. Schöberl, J.: Netgen – an advancing front 2D/3D-mesh generator based on abstract rules. Comput. Visual. Sci. 1, 41–52 1997. Netgen homepage: www.hpfem.jku.at/netgen/

  19. Schöberl, J., Zulehner, W.: On Schwarz-type smoothers for saddle point problems. Numer. Math. 95(2), 377–399 (2003)

    Article  MathSciNet  Google Scholar 

  20. Stüben, K.: An introduction to algebraic multigrid. In: Trottenberg, U., Oosterlee, C., Schüller, A. (eds.), Multigrid. New York, London: Academic Press 2001, pp. 413–532

  21. Stüben, K.: A review of algebraic multigrid. Computational and Applied Mathematics. 128, 281–309 (2001)

    Article  MathSciNet  Google Scholar 

  22. Vanek, P., Mandel, J., Brezina, M.: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing. 56(3), 179–196 (1996)

    Article  MathSciNet  Google Scholar 

  23. Vanka, S.: Block-implicit multigrid calculation of two-dimensional recirculating flows. Comp. Meth. Appl. Mech. Eng. 59(1), 29–48 (1986)

    Article  Google Scholar 

  24. Verfürth, R.: Error estimates for a mixed finite element approximation of the Stokes equations. R.A.I.R.O. Num. Anal. 18(2), 175–182 (1984)

    Google Scholar 

  25. Verfürth, R.: A multilevel algorithm for mixed problems. SIAM J. Numer. Anal. 21, 264–271 (1984)

    Article  MathSciNet  Google Scholar 

  26. Webster, R.: An algebraic multigrid solver for Navier–Stokes problems. Int. J. Numer. Meth. Fluids, 18, 761–780 (1994)

    Article  Google Scholar 

  27. Wittum, G.: On the convergence of multi-grid methods with transforming smoothers. Numer. Math. 57, 15–38 (1990)

    Article  MathSciNet  Google Scholar 

  28. Zulehner, W.: A class of smoothers for saddle point problems. Computing, 65(3), 227–246 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Wabro.

Additional information

Communicated by

G. Wittum

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wabro, M. Coupled algebraic multigrid methods for the Oseen problem. Comput. Visual Sci. 7, 141–151 (2004). https://doi.org/10.1007/s00791-004-0138-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-004-0138-z

Keywords

Navigation