Computing and Visualization in Science

, Volume 6, Issue 2–3, pp 163–170 | Cite as

MooNMD – a program package based on mapped finite element methods

  • Volker JohnEmail author
  • Gunar Matthies
Regular article


The basis of mapped finite element methods are reference elements where the components of a local finite element are defined. The local finite element on an arbitrary mesh cell will be given by a map from the reference mesh cell. This paper describes some concepts of the implementation of mapped finite element methods. From the definition of mapped finite elements, only local degrees of freedom are available. These local degrees of freedom have to be assigned to the global degrees of freedom which define the finite element space. We will present an algorithm which computes this assignment. The second part of the paper shows examples of algorithms which are implemented with the help of mapped finite elements. In particular, we explain how the evaluation of integrals and the transfer between arbitrary finite element spaces can be implemented easily and computed efficiently.


Large Eddy Simulation Element Space Quadrature Rule Finite Element Space Local Degree 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bastian, P., Birken, K., Johannsen, K., Lang, S., Neuss, N., Rentz-Reichert, H., Wieners, C.: UG – a flexible software toolbox for solving partial differential equations. Comput. Visual. Sci. 1, 27–40 (1997) CrossRefGoogle Scholar
  2. 2.
    Behns, V.: Mortar–Techniken zur Behandlung von Grenzschichtproblemen. PhD thesis, Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, 2001 Google Scholar
  3. 3.
    Boffi, D., Gastaldi, L.: On the quadrilateral Q2–P1 element for the Stokes problem. Int. J. Num. Meth. Fluids, 39(11), 1001–1011 (2002) CrossRefGoogle Scholar
  4. 4.
    Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods. Vol. 15. Texts in Applied Mathematics. New York: Springer–Verlag 1994 Google Scholar
  5. 5.
    Ciarlet, P. G.: Basic error estimates for elliptic problems. In P.G. Ciarlet and J.L. Lions, (eds.) Handbook of Numerical Analysis II, pp. 19–351. Amsterdam, New York, Oxford, Tokyo: North–Holland 1991 Google Scholar
  6. 6.
    Dunca, A., John, V., Layton, W. J.: Approximating local averages of fluid velocities: the equilibrium Navier–Stokes equations. Appl. Numer. Math., to appear, 2003 Google Scholar
  7. 7.
    Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes equations. Berlin-Heidelberg-New York: Springer-Verlag 1986 Google Scholar
  8. 8.
    Iliescu, T., John, V., Layton, W. J., Matthies, G., Tobiska, L.: A numerical study of a class of LES models. Int. J. Comput. Fluid Dyn. 17(1), 75–85 (2003) MathSciNetCrossRefGoogle Scholar
  9. 9.
    John, V.: Reference values for drag and lift of a two-dimensional time dependent flow around a cylinder. submitted to Int. J. Num. Meth. Fluids Google Scholar
  10. 10.
    John, V.: Higher order finite element methods and multigrid solvers in a benchmark problem for the 3D Navier–Stokes equations. Int. J. Num. Meth. Fluids 40, 775–798 (2002)CrossRefGoogle Scholar
  11. 11.
    John, V.: Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical Results for a Class of LES Models. Lecture Notes in Computational Science and Engineering 34. Berlin, Heidelberg, New York: Springer-Verlag 2003 Google Scholar
  12. 12.
    John, V.: Slip with friction and penetration with resistance boundary conditions for the Navier–Stokes equations – numerical tests and aspects of the implementation. J. Comp. Appl. Math. 147, 287–300 (2002) CrossRefGoogle Scholar
  13. 13.
    John, V.: The behaviour of the rational LES model in a two–dimensional mixing layer problem. Preprint 28, Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, 2002 Google Scholar
  14. 14.
    John, V., Knobloch, P., Matthies, G., Tobiska, L.: Non-nested multi-level solvers for finite element discretizations of mixed problems. Computing, 68, 313–341 (2002) MathSciNetCrossRefGoogle Scholar
  15. 15.
    John, V., Layton, W.J.: Approximating local averages of fluid velocities: The Stokes problem. Computing, 66, 269–287 (2001) MathSciNetCrossRefGoogle Scholar
  16. 16.
    John, V., Matthies, G.: Higher order finite element discretizations in a benchmark problem for incompressible flows. Int. J. Num. Meth. Fluids, 37, 885–903 (2001) CrossRefGoogle Scholar
  17. 17.
    Lavrova, O., Matthies, G., Mitkova, T., Polevikov, V., Tobiska, L.: Finite element methods for coupled problems in ferrohydrodynamics. In E. Bänsch (ed.) Challenges in Scientific Computing – CISC 2002, Lecture Notes in Computational Science and Engineering 35. Berlin, Heidelberg, New York: Springer-Verlag, 160–183, 2003 Google Scholar
  18. 18.
    Matthies, G.: Finite element methods for free boundary value problems with capillary surfaces. Shaker Verlag, Aachen, 2002. PhD thesis, Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg Google Scholar
  19. 19.
    Matthies, G., Tobiska, L.: The inf-sup condition for the mapped Qk/Pk-1 disc element in arbitrary space dimensions. Computing, 69(2), 119–139 (2002) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Schieweck, F.: A general transfer operator for arbitrary finite element spaces. Preprint 25, Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, 2000 Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Institut für Analysis und NumerikOtto-von-Guericke-Universität MagdeburgMagdeburgGermany
  2. 2.Fakultät für MathematikRuhr-Universität BochumBochumGermany

Personalised recommendations