European Child & Adolescent Psychiatry

, Volume 9, Supplement 2, pp S111–S121 | Cite as

Are there specific disabilities of number processing in adolescent patients with Anorexia nervosa? Evidence from clinical and neuropsychological data when compared to morphometric measures from magnetic resonance imaging

  • Klaus Jürgen Neumärker
  • W. M. Bzufka
  • U. Dudeck
  • J. Hein
  • U. Neumärker


The cerebral effect of the loss of body weight in Anorexia nervosa (A.n.) — the so — called ‘pseudoat-rophy’ — is well known and confirmed by several neuroimaging studies. Another subject of intensive research has been whether A.n. leads to specific cognitive impairments, especially of intelligence. However, there are no previous studies on the relations between the cerebral changes, intelligence performance, and disorders of number processing in adolescent patients with A.n. We examined n=18 inpatients with A.n. (means at admission: age 14.5 years, SD 1.59; BMI 14.9, SD 1.36), diagnosed according to ICD-10 criteria at three different timepoints: at admission to treatment (T1), with 50% restoration of their normal weight (T2), and with normal weight (T3). At each timepoint, a cerebral MRI scan was obtained. Based on the MRI we determined the volume of the external and internal cerebrospinal fluid cavities, fissures of Sylvius, the surface of mesencephalon and pons, and surface and length of the Corpus callosum. At T1 and T3, a neuropsychological examination was conducted including tests of the general fluid ability and general cristallized ability of intelligence (CFT-20), as well as tests of vocabulary and number processing. The same instruments were given to a group of matched controls (means: age 15.8 years, SD 1.57; BMI 20.5, SD 2.3) at one timepoint. We could show a significant volume difference of the lateral ventricles and the fissure of Sylvius between patients at T1 and controls, which abaded with the patient’s weight restoration. But a significant surface deficit of the mesencephalon, and less pronounced in the pons, persisted to T3 in patients when compared to controls, suggesting a selectivity of the cerebral changes in A.n. The neuropsychological examinations revealed significant changes in test performance for both the general intelligence test and number processing. At T1 the number processing performance was significantly lower in patients when compared to controls. However, when the patients had restored their normal body weight, we found 2.02% with a ‘severe disorder of arithmetic skills’ and 4.45% with a ‘functional disorder of arithmetic skills’. This combined prevalence of 6.47% of patients with a subnormal arithmetic performance is analogous to that in the normal population.

Key words

Disabilities of number processing anorexia nervosa clinical, neuropsychological, MRI data 


  1. 1.
    Aboitiz F, Scheibel AB, Zaidel E (1992) Morphometry of the sylvian fissure and the corpus callosum, with emphasis on sex differences. Brain 115: 1521–1541CrossRefPubMedGoogle Scholar
  2. 2.
    Artmann H, Grau H, Adelmann, M, Schleiffer R (1985) Reversible and nonreversible enlargement of cerebrospinal fluid spaces in anorexia nervosa. Neuroradiology 27: 304–312CrossRefPubMedGoogle Scholar
  3. 3.
    Blanz BJ, Detzner U, Lay B, Rose F, Schmidt MH (1997) The intellectual functioning of adolescents with anorexia nervosa and bulimia nervosa. European Child & Adolescent Psychiatry 6: 129–135Google Scholar
  4. 4.
    Bonifazi DZ, Crowther JH, Mizes JS (2000) Validity of questionnaires for assessing dysfunctional cognitions in bulimia nervosa. International Journal of Eating Disorders 27: 464–470CrossRefPubMedGoogle Scholar
  5. 5.
    Braun CMJ, Chouinard MJ (1992) Is anorexia nervosa a neuropsychological disease? Neuropsychology Review 3: 171–212CrossRefPubMedGoogle Scholar
  6. 6.
    Bulik CM, Sullivan PF, Fear JL, Pickering A, Dawn A, McCullin M (1999) Fertility and reproduction in women with anorexia nervosa: a controlled study. Journal of Clinical Psychiatry 60: 130–135PubMedGoogle Scholar
  7. 7.
    Cattell RB (1987) Intelligence, its structure, growth and action. Advances in Psychology 35, North-Holland, AmsterdamGoogle Scholar
  8. 8.
    Cnattingius S, Hultman CM, Dahl M, Sparén P (1999) Very preterm birth, birth trauma, and the risk of anorexia nervosa among girls. Archives of General Psychiatry 56: 634–638CrossRefPubMedGoogle Scholar
  9. 9.
    Crino PB, Eberwine J (1996) Molecular characterization of the dendritic growth cone: regulated mRNA transport and local protein synthesis. Neuron 17: 1173–1187CrossRefPubMedGoogle Scholar
  10. 10.
    Delvenne V, Goldman S, De Maertelaer V, Wikler D, Damhaut Ph, Lotstra F (1997) Brain glucose metabolism in anorexia nervosa and affective disorders: influence of weight loss or depressive symptomatology. Psychiatry Research: Neuroimaging Section 74: 83–92CrossRefGoogle Scholar
  11. 11.
    Delvenne V, Goldman S, De Maertelaer V, Lotstra F (1999) Brain glucose metabolism in eating disorders assessed by positron emission tomography. International Journal of Eating Disorders 25: 29–37CrossRefPubMedGoogle Scholar
  12. 12.
    Diagnostic and Statistical Manual of Mental Disorders (1994) 4th Ed. (DSM-IV). Washington, DC: American Psychiatric AssociationGoogle Scholar
  13. 13.
    Dobbing J (1972) Undermutrition and the developing brain. The relevance of animal models to the human problem. Bibliotheca nutritio et dieta 17: 36–45Google Scholar
  14. 14.
    Dobbing J, Sands J (1973) Quantitative growth and development of human brain. Archives of Disease in Childhood 48: 757–767CrossRefPubMedGoogle Scholar
  15. 15.
    Ellison Z, Foong J, Howard R, Bullmore E, Williams S, Treasure J (1998) Functional anatomy of calorie fear in anorexia nerv osa. The Lancet 352: 1192CrossRefGoogle Scholar
  16. 16.
    Fox CF (1981) Neuropsychological correlates of anorexia nervosa. International Journal of Psychiatry in Medicine 11: 285–290CrossRefPubMedGoogle Scholar
  17. 17.
    Giedd JN, Snell JW, Lange N, Rajapakse JC, Casey BJ, Kozuch PL, Vaituzis AC, Vauss YC, Hamburger SD, Kaysen D, Rapoport JL (1996) Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cerebral Cortex 6: 551–560CrossRefPubMedGoogle Scholar
  18. 18.
    Golden CJ, Hammeke T, Purisch AD (1980) A Manual for the Luria-Nebraska Neuropsychological Battery. Los Angeles: Western Psychological ServicesGoogle Scholar
  19. 19.
    Golden NH, Ashtari M, Kohn MR, Patel M, Jacobson MS, Fletcher A, Shenker IR (1996) Reversibility of cerebral ventricular enlargement in anorexia nervosa, demonstrated by quantitative magnetic resonance imaging. The Journal of Pediatrics 128: 296–301CrossRefPubMedGoogle Scholar
  20. 20.
    Gordon I, Lask B, Bryant-Waugh R, Christie D, Timimi S (1997) Childhood-onset anorexia nervosa: towards identifying a biological substrate. International Journal of Eating Disorders 22: 159–165CrossRefPubMedGoogle Scholar
  21. 21.
    Gormally J, Black S, Daston S, Rardin D (1982) The assessment of binge eating severity among obese persons. Addictive Behaviors 7: 47–55CrossRefPubMedGoogle Scholar
  22. 22.
    Hamsher K de, Halmi KA, Benton AL (1981) Prediction of outcome in anorexia nervosa from neuropsychological status. Psychiatry Research 4: 79–88CrossRefGoogle Scholar
  23. 23.
    Hasselbalch SG, Knudsen GM, Jakobsen J, Hageman LP, Holm S, Paulson OB (1994) Brain metabolism during short-term starvation in humans. Journal of Cerebral Blood Flow and Metabolism 14: 125–131PubMedGoogle Scholar
  24. 24.
    Herman JP, Cullinan WE (1997) Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends in Neurosciences 20: 78–84CrossRefPubMedGoogle Scholar
  25. 25.
    Herzog W, Deter HC, Fiehn W, Petzold E (1997) Medical findings and predictors of long-term physical outcome in anorexia nervosa: a prospective, 12-year follow-up study. Psychological Medicine 27: 269–279CrossRefPubMedGoogle Scholar
  26. 26.
    Holman RT, Adams CE, Nelson RA, Grater SJE, Jaskiewicz JA, Johnson SB, Erdman JW (1995) Patients with anorexia nervosa demonstrate deficiencies of selected essential fatty acids, compensatory changes in nonessential fatty acids and decreased fluidity of plasma lipids. Journal of Nutrition 125: 901–907PubMedGoogle Scholar
  27. 27.
    Husain MM, Black KJ, Doraiswamy PM, Shah SA, Rockwell WJK, Ellinwood EH Jr, Krishnan KRR (1992) Subcortical brain anatomy in anorexia and bulimia. Biological Psychiatry 31: 735–738CrossRefPubMedGoogle Scholar
  28. 28.
    Internationale Klassifikation psychischer Störungen ICD-10. Kapitel V (F). Klinisch-diagnostische Leitlinien (1993) In: Dilling H, Mombour W, Schmidt mH (Eds) 2. Auflage, Bern, Göttingen, Toronto, Seattle: HuberGoogle Scholar
  29. 29.
    Kingston K, Szmukler G, Andrewes D, Tress B, Desmond P (1996) Neuropsychological and structural brain changes in anorexia nervosa before and after refeeding. Psychological Medicine 26: 15–28CrossRefPubMedGoogle Scholar
  30. 30.
    Krahn DD, Gosnell BA (1989) Corticotropin-releasing hormone: possible role in eating disorders. Psychiatric Medicine 7: 235–245PubMedGoogle Scholar
  31. 31.
    Krieg J-C, Holthoff V, Schreiber W, Pirke KM, Herholz K (1991) Glucose metabolism in the caudate nuclei of patients with eating disorders, measured by PET. European Archives of Psychiatry and Clinical Neuroscience 240: 331–333CrossRefPubMedGoogle Scholar
  32. 32.
    Laessle RG, Krieg JC, Fichter MM, Pirke KM (1989) Cerebral atrophy and vigilance performance in patients with anorexia nervosa and bulimia nervosa. Neuropsychobiology 21: 187–191CrossRefPubMedGoogle Scholar
  33. 33.
    Lambe EK, Katzman DK, Mikulis DJ, Kennedy SH, Zipursky RB (1997) Cerebral gray matter volume deficits after weight recovery from anorexia nervosa. Archives of General Psychiatry 54: 537–542PubMedGoogle Scholar
  34. 34.
    Luria AR (1973) The Working Brain — An Introduction to Neuropsychology London: Penguin Books Ltd.Google Scholar
  35. 35.
    Luria AR (1980) Higher Cortical Function in Man. 2. ed. New York: Basic BooksGoogle Scholar
  36. 36.
    Mattingly D, Bhanji S (1995) Hypoglycaemia and anorexia nervosa. Journal of the Royal Society of Medicine 88: 191–195PubMedGoogle Scholar
  37. 37.
    Maxwell JK, Tucker DM, Townes BD (1984) Asymmetric cognitive function in anorexia nervosa. International Journal of Neuroscience 24: 37–44CrossRefPubMedGoogle Scholar
  38. 38.
    McKay SE, Humphries LL, Allen ME, Clawson DR (1986) Neuropsychological test performance of bulimic patients. International Journal of Neuroscience 30: 73–80PubMedGoogle Scholar
  39. 39.
    Mizes JS, Klesges RC (1989) Validity, reliability, and factor structure of the anorectic cognitions questionnaire. Addictive Behaviors 14: 589–594CrossRefPubMedGoogle Scholar
  40. 40.
    Mizes JS (1991) Construct validity and factor stability of the anorectic cognitions questionnaire. Addictive Behaviors 16: 89–93CrossRefPubMedGoogle Scholar
  41. 41.
    Mizes JS, Christiano BA (1995) Assessment of cognitive variables relevant to cognitive behavioral perspectives on anorexia nervosa and bulimia nervosa. Behavior Research and Therapy 33: 95–105CrossRefGoogle Scholar
  42. 42.
    Neumärker K-J, Loetzke HH (1980) Die Hirnstammentwicklung beim menschlichen Feten im Alter zwischen 14 und 40 Wochen. Ein Beitrag zur Beziehung von Struktur, Funktion und Verhalten. Schweizer Archiv für Neurologie, Neurochirurgie und Psychiatrie 126: 199–212PubMedGoogle Scholar
  43. 43.
    Neumärker K-J, Dudeck U, Meyer U, Neumärker U, Schulz E, Schönheit B (1997) Anorexia nervosa and sudden death in childhood: clinical data and results obtained from quantitative neurohistological investigations of cortical neurons. European Archives of Psychiatry and Clinical Neuroscience 247: 16–22CrossRefPubMedGoogle Scholar
  44. 44.
    Neumärker K-J, Bartsch AJ, Bzufka MW, Dudeck U, Greil H, Neumärker U (1999) Anorexia nervosa — Die Trias von Metrik-Index, BMI-Altersperzentilenkurve und Zielgewicht. Zeitschrift für Kinder- und Jugendpsychiatrie und Psychotherapie 27: 5–17CrossRefPubMedGoogle Scholar
  45. 45.
    Neumärker K-J (2000) Mortality rates and causes of death. European Eating Disorders Review 8: 181–187CrossRefGoogle Scholar
  46. 46.
    Nozoe SI, Naruo T, Yonekura R, Nakabeppu Y, Soejima Y, Nagai N, Nakajo M, Tanaka H (1995) Comparison of regional cerebral blood flow in patients with eating disorders. Brain Research Bulletin 36: 251–255CrossRefPubMedGoogle Scholar
  47. 47.
    Palazidou E, Robinson P, Lishman WA (1990) Neuroradiological and neuropsychological assessment in anorexia nervosa. Psychological Medicine 20: 521–527CrossRefPubMedGoogle Scholar
  48. 48.
    Patchell RA, Fellows HA, Humphries LL (1994) Neurologic complications of anorexia nervosa. Acta Neurologica Scandinavica 89: 111–116PubMedCrossRefGoogle Scholar
  49. 49.
    Pendleton Jones B, Duncan CC, Brouwers P (1991) Cognition of eating disorders. Journal of Clinical and Experimental Neuropsychology 13: 711–728CrossRefGoogle Scholar
  50. 50.
    Pfefferbaum A, Mathalon DH, Sullivan EV, Rawles JM, Zipursky RB, Lim KO (1994) A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Archives of Neurology 51: 874–887PubMedGoogle Scholar
  51. 51.
    Reiss AL, Abrams MT, Singer HS, Ross JL, Denckla MB (1996) Brain development, gender and IQ in children. A volumetric imaging study. Brain 119: 1763–1774CrossRefPubMedGoogle Scholar
  52. 52.
    Rivest S, Richard D (1990) Involvement of corticotropin-releasing factor in the anorexia induced by exercise. Brain Research Bulletin 25: 169–172CrossRefPubMedGoogle Scholar
  53. 53.
    Roser W, Bubl R, Buergin D, Seelig J, Radue EW, Rost B (1999) Metabolic changes in the brain of patients with anorexia and bulimia nervosa as detected by proton magnetic resonance spectroscopy. International Journal of Eating Disorders 26: 119–136CrossRefPubMedGoogle Scholar
  54. 54.
    Rourke BP (1993) Arithmetic disabilities, specific and otherwise: a neuropsychological perspective. Journal of Learning Disabilities 26: 214–226CrossRefPubMedGoogle Scholar
  55. 55.
    Small A, Madero J, Teagno L, Ebert M (1983) Intellect, perceptual characteristics, and weight gain in anorexia nervosa. The Journal of Clinical Psychology 39: 780–782CrossRefGoogle Scholar
  56. 56.
    Smid HGOM, Trümper BG, Pottag G, Wagner K, Lobmann R, Scheich H, Lehnert H, Heinze HJ (1997) Differentiation of hypoglycaemia induced cognitive impairments. An electrophysiological approach. Brain 120: 1041–1056CrossRefPubMedGoogle Scholar
  57. 57.
    Swayze VW, Andersen A, Arndt S, Rajarethinam R, Fleming F, Sato Y, Andreasen NC (1996) Reversibility of brain tissue loss in anorexia nervosa assessed with a computerized Talairach 3-D proportional grid. Psychological Medicine 26: 381–390CrossRefPubMedGoogle Scholar
  58. 58.
    Schmidt MH, Göpel C, Blanz B (1997) Kognitive Defizite bei hypokalorisch ernährten Tieren: Analogien zu neuropsychologischen Defiziten bei Anorexia nervosa? Zeitschrift für Kinder- und Jugendpsychiatrie 25: 160–167Google Scholar
  59. 59.
    Schmidt U, Tiller J, Blanchard M, Andrews B, Treasure J (1997) Is there a specific trauma precipitating anorexia nervosa? Psychological Medicine 27: 523–530CrossRefPubMedGoogle Scholar
  60. 60.
    Schönheit B, Meyer U, Kuchinke J, Schulz E, Neumärker K-J (1996) Morphometrical investigations on lamina-V-pyramidal-neurons in the frontal cortex of a case with anorexia nervosa. Brain Research 37: 269–280Google Scholar
  61. 61.
    Schulman RG, Kinder BN, Powers PS, Prange M, Gleghorn A (1986) The development of a scale to measure cognitive distortions in bulimia. Journal of Personality Assessment 50: 630–639CrossRefPubMedGoogle Scholar
  62. 62.
    Steen RG, Ogg RJ, Reddick WE, Kingsley PB (1997) Age-related changes in the pediatric brain: quantitative MR evidence of maturational changes during adolescence. American Journal of Neuroradiology 18: 819–828PubMedGoogle Scholar
  63. 63.
    Stein A, Murray L, Cooper P, Fairburn CG (1996) Infant growth in the context of maternal eating disorders and maternal depression: a comparative study. Psychological Medicine 26: 569–574CrossRefPubMedGoogle Scholar
  64. 64.
    Weiler IJ, Greenough WT (1999) Synaptic synthesis of the fragile X protein: possible involvement in synapse maturation and elimination. American Journal of Medical Genetics 83: 248–252CrossRefPubMedGoogle Scholar
  65. 65.
    Weis S, Kimbacher M, Wenger E, Neuhold A (1993) Morphometric analysis of the corpus callosum using MR: correlation of measurements with aging in healthy individuals. American Journal of Neuroradiology 14: 637–645PubMedGoogle Scholar
  66. 66.
    Weiss RH (1987) Grundintelligenztest-Skala 2 (CFT 20). 3., verbesserte und erweiterte Auflage mit Wortschatztest (WS) und Zahlenfolgentest (ZF). Göttingen: HogrefeGoogle Scholar
  67. 67.
    Weiss RH (1987) Wortschatztest (WS) und Zahlenfolgentest (ZF). Ergänzungstests zum Grundintelligenztest CFT 20. Handanweisung. Göttingen, Toronto, Zürich: HogrefeGoogle Scholar
  68. 68.
    Wickman KD, Clapham DE (1995) G-Protein regulation of ion channels. Current Opinion in Neurobiology 5: 278–285CrossRefPubMedGoogle Scholar
  69. 69.
    Wiggins RC, Fuller G, Enna SJ (1984) Undernutrition and the development of brain neurotransmitter systems. Life Sciences 35: 2085–2094CrossRefPubMedGoogle Scholar
  70. 70.
    Witt ED, Ryan C, Hsu LKG (1985) Learning deficits in adolescents with anorexia nervosa. The Journal of Nervous and Mental Disease 173: 182–184CrossRefPubMedGoogle Scholar
  71. 71.
    Zipfel S, Löwe B, Reas DL, Deter HC, Herzog W (2000) Long-term prognosis in anorexia nervosa: lessons from a 21-year follow-up study. The Lancet 355: 721–722CrossRefGoogle Scholar

Copyright information

© Steinkopff-Verlag 2000

Authors and Affiliations

  • Klaus Jürgen Neumärker
    • 1
  • W. M. Bzufka
    • 1
  • U. Dudeck
    • 1
  • J. Hein
    • 1
  • U. Neumärker
    • 1
  1. 1.Clinic of Child and Adolescent Psychiatry and Psychotherapy Charité Hospital, Campus MitteMedical Faculty of Humboldt-University of BerlinBerlinGermany

Personalised recommendations