Skip to main content
Log in

Vitamin D3 improves iminodipropionitrile-induced tic-like behavior in rats through regulation of GDNF/c-Ret signaling activity

  • Original Contribution
  • Published:
European Child & Adolescent Psychiatry Aims and scope Submit manuscript

Abstract

Children with chronic tic disorders (CTD), including Tourette syndrome (TS), have significantly reduced serum 25-hydroxyvitamin D [25(OH)D]. While vitamin D3 supplementation (VDS) may reduce tic symptoms in these children, its mechanism is unclear. The study aim was to investigate the effects and mechanisms of vitamin D deficiency (VDD) and VDS on TS model behavior. Forty 5-week-old male Sprague–Dawley rats were randomly divided into (n = 10 each): control, TS model, TS model with VDD (TS + VDD), or TS model with VDS (TS + VDS; two intramuscular injections of 20,000 IU/200 g) groups. The VDD model was diet-induced (0 IU vitamin D/kg); the TS model was iminodipropionitrile (IDPN)-induced. All groups were tested for behavior, serum and striatal 25(OH)D and dopamine (DA), mRNA expressions of vitamin D receptor (VDR), glial cell line-derived neurotrophic factor (GDNF), protooncogene tyrosine–protein kinase receptor Ret (c-Ret), and DA D1 (DRD1) and D2 (DRD2) receptor genes in the striatum. TS + VDD had higher behavior activity scores throughout, and higher total behavior score at day 21 compared with TS model. In contrast, day 21 TS + VDS stereotyped behavior scores and total scores were lower than TS model. The serum 25(OH)D in TS + VDD was < 20 ng/mL, and lower than control. Striatal DA of TS was lower than control. Compared with TS model, striatal DA of TS + VDD was lower, while in TS + VDS it was higher than TS model. Furthermore, mRNA expression of VDR, GDNF, and c-Ret genes decreased in TS model, and GDNF expression decreased more in TS + VDD, while TS + VDS had higher GDNF and c-Ret expressions. VDD aggravates, and VDS ameliorates tic-like behavior in an IDPN-induced model. VDS may upregulate GDNF/c-Ret signaling activity through VDR, reversing the striatal DA decrease and alleviating tic-like behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The original data supporting the conclusions of this article will be made available on request.

Code availability

Not applicable.

Abbreviations

CTDs:

Chronic tic disorders

TS:

Tourette syndrome

CSTC:

Cortico-striato-thalamo-cortical

DRD2:

Dopamine D2 receptor

DRD1:

Dopamine D1 receptor

VD:

Vitamin D

25[OH]D:

25-Hydroxyvitamin D

VDR:

Vitamin D receptor

TH:

Enzyme–tyrosine hydroxylase

GDNF:

Glial cell line-derived neurotrophic factor

c-Ret:

Protooncogene tyrosine–protein kinase receptor Ret

VDS:

Vitamin D3 supplementation

VDD:

Vitamin D deficiency

IDPN:

Iminodipropionitrile

ELISA:

Enzyme-linked immunosorbent assay

qPCR:

Quantitative real-time polymerase chain reaction

SD:

Standard deviation

References

  1. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Association, Washington

    Book  Google Scholar 

  2. Jafari F, Abbasi P, Rahmati M, Hodhodi T, Kazeminia M (2022) Systematic review and meta-analysis of tourette syndrome prevalence; 1986 to 2022. Pediatr Neurol 137:6–16. https://doi.org/10.1016/j.pediatrneurol.2022.08.010

    Article  PubMed  Google Scholar 

  3. Scharf JM, Miller LL, Gauvin CA, Alabiso J, Mathews CA, Ben-Shlomo Y (2015) Population prevalence of Tourette syndrome: a systematic review and meta-analysis. Mov Disord 30:221–228. https://doi.org/10.1002/mds.26089

    Article  PubMed  Google Scholar 

  4. Szejko N, Robinson S, Hartmann A, Ganos C, Debes NM, Skov L, Haas M, Rizzo R, Stern J, Münchau A, Czernecki V, Dietrich A, Murphy TL, Martino D, Tarnok Z, Hedderly T, Müller-Vahl KR, Cath DC (2022) European clinical guidelines for Tourette syndrome and other tic disorders-version 2.0. Part I: assessment. Eur Child Adolesc Psychiatry 31:383–402. https://doi.org/10.1007/s00787-021-01842-2

    Article  PubMed  Google Scholar 

  5. Bloch MH, Leckman JF (2009) Clinical course of Tourette syndrome. J Psychosom Res 67:497–501. https://doi.org/10.1016/j.jpsychores.2009.09.002

    Article  PubMed  PubMed Central  Google Scholar 

  6. Silvestri PR, Chiarotti F, Baglioni V, Neri V, Cardona F, Cavanna AE (2016) Health-related quality of life in patients with Gilles de la Tourette syndrome at the transition between adolescence and adulthood. Neurol Sci 37:1857–1860. https://doi.org/10.1007/s10072-016-2682-y

    Article  PubMed  PubMed Central  Google Scholar 

  7. Vermilion J, Augustine E, Adams HR, Vierhile A, Lewin AB, Thatcher A, McDermott MP, O’Connor T, Kurlan R, van Wijngaarden E, Murphy TK, Mink JW (2020) Tic disorders are associated with lower child and parent quality of life and worse family functioning. Pediatr Neurol 105:48–54. https://doi.org/10.1016/j.pediatrneurol.2019.12.003

    Article  PubMed  Google Scholar 

  8. Aldred M, Cavanna AE (2015) Tourette syndrome and socioeconomic status. Neurol sci 36:1643–1649. https://doi.org/10.1007/s10072-015-2223-0

    Article  PubMed  Google Scholar 

  9. Abdulkadir M, Mathews CA, Scharf JM, Yu D, Tischfield JA, Heiman GA, Hoekstra PJ, Dietrich A (2019) Polygenic risk scores derived from a tourette syndrome genome-wide association study predict presence of tics in the avon longitudinal study of parents and children cohort. Biol Psychiat 85:298–304. https://doi.org/10.1016/j.biopsych.2018.09.011

    Article  PubMed  Google Scholar 

  10. Wendt FR, Pathak GA, Tylee DS, Goswami A, Polimanti R (2020) Heterogeneity and polygenicity in psychiatric disorders: a genome-wide perspective. Chronic stress (Thousand Oaks, Calif) 4:2470547020924844. https://doi.org/10.1177/2470547020924844

    Article  PubMed  Google Scholar 

  11. McCairn KW, Iriki A, Isoda M (2013) Global dysrhythmia of cerebro-basal ganglia-cerebellar networks underlies motor tics following striatal disinhibition. J Neurosci 33:697–708. https://doi.org/10.1523/jneurosci.4018-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shitova AD, Zharikova TS, Kovaleva ON, Luchina AM, Aktemirov AS, Olsufieva AV, Sinelnikov MY, Pontes-Silva A, Zharikov YO (2023) Tourette Syndrome and Obsessive-Compulsive Disorder: A Comprehensive Review of Structural Alterations and Neurological Mechanisms. Behav Brain Res. https://doi.org/10.1016/j.bbr.2023.114606

    Article  PubMed  Google Scholar 

  13. Wen H, Liu Y, Wang J, Rekik I, Zhang J, Zhang Y, Tian H, Peng Y, He H (2016) Combining tract- and atlas-based analysis reveals microstructural abnormalities in early Tourette syndrome children. Hum Brain Mapp 37:1903–1919. https://doi.org/10.1002/hbm.23146

    Article  PubMed  PubMed Central  Google Scholar 

  14. Leckman JF, Bloch MH, Smith ME, Larabi D, Hampson M (2010) Neurobiological substrates of Tourette’s disorder. J Child Adolesc Psychopharmacol 20:237–247. https://doi.org/10.1089/cap.2009.0118

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yael D, Vinner E, Bar-Gad I (2015) Pathophysiology of tic disorders. Mov disord 30:1171–1178. https://doi.org/10.1002/mds.26304

    Article  PubMed  Google Scholar 

  16. Wong DF, Brasić JR, Singer HS, Schretlen DJ, Kuwabara H, Zhou Y, Nandi A, Maris MA, Alexander M, Ye W, Rousset O, Kumar A, Szabo Z, Gjedde A, Grace AA (2008) Mechanisms of dopaminergic and serotonergic neurotransmission in Tourette syndrome: clues from an in vivo neurochemistry study with PET. Neuropsychopharmacol 33:1239–1251. https://doi.org/10.1038/sj.npp.1301528

    Article  CAS  Google Scholar 

  17. Hartmann A, Worbe Y (2013) Pharmacological treatment of Gilles de la Tourette syndrome. Neurosci Biobehav Rev 37:1157–1161. https://doi.org/10.1016/j.neubiorev.2012.10.014

    Article  CAS  PubMed  Google Scholar 

  18. Bronfeld M, Israelashvili M, Bar-Gad I (2013) Pharmacological animal models of Tourette syndrome. Neurosci Biobehav Rev 37:1101–1119. https://doi.org/10.1016/j.neubiorev.2012.09.010

    Article  CAS  PubMed  Google Scholar 

  19. Zhang F, Li A (2015) Dual restoring effects of gastrodin on dopamine in rat models of Tourette’s syndrome. Neurosci Lett 588:62–66. https://doi.org/10.1016/j.neulet.2014.12.051

    Article  CAS  PubMed  Google Scholar 

  20. Turjanski N, Sawle GV, Playford ED, Weeks R, Lammerstma AA, Lees AJ, Brooks DJ (1994) PET studies of the presynaptic and postsynaptic dopaminergic system in Tourette’s syndrome. J Neurol Neurosurg Psychiatry 57:688–692. https://doi.org/10.1136/jnnp.57.6.688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Anca MH, Giladi N, Korczyn AD (2004) Ropinirole in Gilles de la Tourette syndrome. Neurology 62:1626–1627. https://doi.org/10.1212/01.wnl.0000123111.00324.bf

    Article  PubMed  Google Scholar 

  22. Black KJ, Mink JW (2000) Response to levodopa challenge in Tourette syndrome. Mov disord 15:1194–1198. https://doi.org/10.1002/1531-8257(200011)15:6%3c1194::aid-mds1019%3e3.0.co;2-h

    Article  CAS  PubMed  Google Scholar 

  23. Gilbert DL, Sethuraman G, Sine L, Peters S, Sallee FR (2000) Tourette’s syndrome improvement with pergolide in a randomized, double-blind, crossover trial. Neurol 54:1310–1315. https://doi.org/10.1212/wnl.54.6.1310

    Article  CAS  Google Scholar 

  24. Eyles DW, Burne TH, McGrath JJ (2013) Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Front Neuroendocrinol 34:47–64. https://doi.org/10.1016/j.yfrne.2012.07.001

    Article  CAS  PubMed  Google Scholar 

  25. Scarmeas N, Anastasiou CA, Yannakoulia M (2018) Nutrition and prevention of cognitive impairment. The Lancet Neurol 17:1006–1015. https://doi.org/10.1016/s1474-4422(18)30338-7

    Article  PubMed  Google Scholar 

  26. Groves NJ, Burne THJ (2017) The impact of vitamin D deficiency on neurogenesis in the adult brain. Neural Regen Res 12:393–394. https://doi.org/10.4103/1673-5374.202936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haindl MT, Üçal M, Wonisch W, Lang M, Nowakowska M, Adzemovic MZ, Khalil M, Enzinger C, Hochmeister S (2023) Vitamin d-an effective antioxidant in an animal model of progressive Multiple Sclerosis. Nutrients. https://doi.org/10.3390/nu15153309

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sassi F, Tamone C, D’Amelio P (2018) Vitamin d: nutrient, hormone, and immunomodulator. Nutrients. https://doi.org/10.3390/nu10111656

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liu Y, Li YW, Tang YL, Liu X, Jiang JH, Li QG, Yuan JY (2013) Vitamin D: preventive and therapeutic potential in Parkinson’s disease. Curr Drug Metab 14:989–993. https://doi.org/10.2174/1389200211314090005

    Article  CAS  PubMed  Google Scholar 

  30. Pertile RA, Cui X, Eyles DW (2016) Vitamin D signaling and the differentiation of developing dopamine systems. Neuroscience 333:193–203. https://doi.org/10.1016/j.neuroscience.2016.07.020

    Article  CAS  PubMed  Google Scholar 

  31. Cui X, Pertile R, Liu P, Eyles DW (2015) Vitamin D regulates tyrosine hydroxylase expression: N-cadherin a possible mediator. Neuroscience 304:90–100. https://doi.org/10.1016/j.neuroscience.2015.07.048

    Article  CAS  PubMed  Google Scholar 

  32. Hawes JE, Tesic D, Whitehouse AJ, Zosky GR, Smith JT, Wyrwoll CS (2015) Maternal vitamin D deficiency alters fetal brain development in the BALB/c mouse. Behav Brain Res 286:192–200. https://doi.org/10.1016/j.bbr.2015.03.008

    Article  CAS  PubMed  Google Scholar 

  33. Ibáñez CF, Andressoo JO (2017) Biology of GDNF and its receptors - Relevance for disorders of the central nervous system. Neurobiol Dis 97:80–89. https://doi.org/10.1016/j.nbd.2016.01.021

    Article  CAS  PubMed  Google Scholar 

  34. Pöyhönen S, Er S, Domanskyi A, Airavaara M (2019) Effects of neurotrophic factors in glial cells in the central nervous system: expression and properties in neurodegeneration and injury. Front Physiol 10:486. https://doi.org/10.3389/fphys.2019.00486

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pertile RAN, Cui X, Hammond L, Eyles DW (2018) Vitamin D regulation of GDNF/Ret signaling in dopaminergic neurons. Faseb J 32:819–828. https://doi.org/10.1096/fj.201700713R

    Article  CAS  PubMed  Google Scholar 

  36. Li HH, Shan L, Wang B, Du L, Xu ZD, Jia FY (2018) Serum 25-hyroxyvitamin D levels and tic severity in Chinese children with tic disorders. Psychiatry Res 267:80–84. https://doi.org/10.1016/j.psychres.2018.05.066

    Article  CAS  PubMed  Google Scholar 

  37. Li HH, Xu ZD, Wang B, Feng JY, Dong HY, Jia FY (2019) Clinical improvement following vitamin D3 supplementation in children with chronic tic disorders. Neuropsychiatr Dis Treat 15:2443–2450. https://doi.org/10.2147/ndt.S212322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang CX, Wang B, Sun JJ, Xiao CY, Ma H, Jia FY, Li HH (2023) Circulating retinol and 25(OH)D contents and their association with symptoms in children with chronic tic disorders. Eur Child Adolesc Psychiatry. https://doi.org/10.1007/s00787-023-02226-4

    Article  PubMed  PubMed Central  Google Scholar 

  39. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96:1911–1930. https://doi.org/10.1210/jc.2011-0385

    Article  CAS  PubMed  Google Scholar 

  40. Al Kadasah S, Al Mutairy A, Siddiquei M, Khan HA, Abdulwahid Arif I, Al Moutaery K, Tariq M (2009) Pentoxifylline attenuates iminodipropionitrile-induced behavioral abnormalities in rats. Behav Pharmacol 20:356–360. https://doi.org/10.1097/FBP.0b013e32832ec5ea

    Article  CAS  PubMed  Google Scholar 

  41. Diamond BI, Reyes MG, Borison R (1982) A new animal model for Tourette syndrome. Adv Neurol 35:221–225

    CAS  PubMed  Google Scholar 

  42. Khan HA, Alhomida AS, Arif IA (2009) Neurovestibular toxicities of acrylonitrile and iminodipropionitrile in rats: a comparative evaluation of putative mechanisms and target sites. Toxicol sci 109:124–131. https://doi.org/10.1093/toxsci/kfp043

    Article  CAS  PubMed  Google Scholar 

  43. Lin L, Yu L, Xiang H, Hu X, Yuan X, Zhu H, Li H, Zhang H, Hou T, Cao J, Wu S, Su W, Li M (2019) Effects of acupuncture on behavioral stereotypies and brain dopamine system in mice as a model of tourette syndrome. Front Behav Neurosci 13:239. https://doi.org/10.3389/fnbeh.2019.00239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cui X, Wang K, Zhang J, Cao ZB (2023) Aerobic exercise ameliorates myocardial fibrosis via affecting vitamin d receptor and transforming growth factor-β1 signaling in vitamin d-deficient mice. Nutrients. https://doi.org/10.3390/nu15030741

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yates NJ, Tesic D, Feindel KW, Smith JT, Clarke MW, Wale C, Crew RC, Wharfe MD, Whitehouse AJO, Wyrwoll CS (2018) Vitamin D is crucial for maternal care and offspring social behaviour in rats. J Endocrinol 237:73–85. https://doi.org/10.1530/joe-18-0008

    Article  CAS  PubMed  Google Scholar 

  46. Gogulothu R, Nagar D, Gopalakrishnan S, Garlapati VR, Kallamadi PR, Ismail A (2020) Disrupted expression of genes essential for skeletal muscle fibre integrity and energy metabolism in Vitamin D deficient rats. J Steroid Biochem Mol Biol 197:105525. https://doi.org/10.1016/j.jsbmb.2019.105525

    Article  CAS  PubMed  Google Scholar 

  47. Wang N, Wu X, Yang Q, Wang D, Wu Z, Wei Y, Cui J, Hong L, Xiong L, Qin D (2022) Qinglong zhidong decoction alleviated tourette syndrome in mice via modulating the level of neurotransmitters and the composition of gut microbiota. Front Pharmacol 13:819872. https://doi.org/10.3389/fphar.2022.819872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen J, Leong PK, Leung HY, Chan WM, Li Z, Qiu J, Ko KM, Chen J (2019) A Chinese herbal formulation, xiao-er-an-shen decoction, attenuates tourette syndrome, possibly by reversing abnormal changes in neurotransmitter levels and enhancing antioxidant status in mouse brain. Front Pharmacol 10:812. https://doi.org/10.3389/fphar.2019.00812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wakata N, Araki Y, Sugimoto H, Iguchi H, Kinoshita M (2000) IDPN-induced monoamine and hydroxyl radical changes in the rat brain. Neurochem Res 25:401–404. https://doi.org/10.1023/a:1007553323461

    Article  CAS  PubMed  Google Scholar 

  50. Hirata H, Ogawa N, Asanuma M, Ota Z, Mori A (1993) Effect of chronic ceruletide treatment on dopaminergic neurotransmitters, receptors and their mRNAs in the striatum of rats with dyskinesia induced by iminodipropionitrile. Brain Res 604:197–204. https://doi.org/10.1016/0006-8993(93)90369-x

    Article  CAS  PubMed  Google Scholar 

  51. Ogawa N, Mizukawa K, Haba K, Sato H (1990) Neurotransmitter and receptor alterations in the rat persistent dyskinesia model induced by iminodipropionitrile. Eur Neurol 30(Suppl 1):31–40. https://doi.org/10.1159/000117171

    Article  PubMed  Google Scholar 

  52. Bond M, Moll N, Rosello A, Bond R, Schnell J, Burger B, Hoekstra PJ, Dietrich A, Schrag A, Kocovska E, Martino D, Mueller N, Schwarz M, Meier UC (2022) Vitamin D levels in children and adolescents with chronic tic disorders: a multicentre study. Eur Child Adolesc Psychiatry 31:1–12. https://doi.org/10.1007/s00787-021-01757-y

    Article  PubMed  Google Scholar 

  53. Xiaoxia L, Jilong J, Xianrui C, Yanhui C (2023) Vitamin D status and tic disorder: a systematic review and meta-analysis of observational studies. Front Pediatr 11:1173741. https://doi.org/10.3389/fped.2023.1173741

    Article  PubMed  PubMed Central  Google Scholar 

  54. Greene DJ, Williams Iii AC, Koller JM, Schlaggar BL, Black KJ (2017) Brain structure in pediatric Tourette syndrome. Mol Psychiatry 22:972–980. https://doi.org/10.1038/mp.2016.194

    Article  CAS  PubMed  Google Scholar 

  55. Cui X, Gooch H, Groves NJ, Sah P, Burne TH, Eyles DW, McGrath JJ (2015) Vitamin D and the brain: key questions for future research. J Steroid Biochem Mol Biol 148:305–309. https://doi.org/10.1016/j.jsbmb.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  56. Eyles D, Brown J, Mackay-Sim A, McGrath J, Feron F (2003) Vitamin D3 and brain development. Neuroscience 118:641–653. https://doi.org/10.1016/s0306-4522(03)00040-x

    Article  CAS  PubMed  Google Scholar 

  57. Almeras L, Eyles D, Benech P, Laffite D, Villard C, Patatian A, Boucraut J, Mackay-Sim A, McGrath J, Féron F (2007) Developmental vitamin D deficiency alters brain protein expression in the adult rat: implications for neuropsychiatric disorders. Proteomics 7:769–780. https://doi.org/10.1002/pmic.200600392

    Article  CAS  PubMed  Google Scholar 

  58. Frick L, Pittenger C (2016) Microglial dysregulation in ocd, tourette syndrome, and pandas. J Immunol Res 2016:8606057. https://doi.org/10.1155/2016/8606057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Spinello C, Laviola G, Macrì S (2016) Pediatric autoimmune disorders associated with streptococcal infections and Tourette’s syndrome in preclinical studies. Front Neurosci 10:310. https://doi.org/10.3389/fnins.2016.00310

    Article  PubMed  PubMed Central  Google Scholar 

  60. Meza-Meza MR, Ruiz-Ballesteros AI, de la Cruz-Mosso U (2022) Functional effects of vitamin D: From nutrient to immunomodulator. Crit Rev Food Sci Nutr 62:3042–3062. https://doi.org/10.1080/10408398.2020.1862753

    Article  CAS  PubMed  Google Scholar 

  61. Verma R, Kim JY (2016) 1,25-Dihydroxyvitamin d3 facilitates m2 polarization and upregulates tlr10 expression on human microglial cells. NeuroImmunoModulation 23:75–80. https://doi.org/10.1159/000444300

    Article  CAS  PubMed  Google Scholar 

  62. Buse J, Schoenefeld K, Münchau A, Roessner V (2013) Neuromodulation in Tourette syndrome: dopamine and beyond. Neurosci Biobehav Rev 37:1069–1084. https://doi.org/10.1016/j.neubiorev.2012.10.004

    Article  CAS  PubMed  Google Scholar 

  63. Müller-Vahl KR, Loeber G, Kotsiari A, Müller-Engling L, Frieling H (2017) Gilles de la Tourette syndrome is associated with hypermethylation of the dopamine D2 receptor gene. J Psychiatr Res 86:1–8. https://doi.org/10.1016/j.jpsychires.2016.11.004

    Article  PubMed  Google Scholar 

  64. Trinko JR, Land BB, Solecki WB, Wickham RJ, Tellez LA, Maldonado-Aviles J, de Araujo IE, Addy NA, DiLeone RJ (2016) Vitamin d3: a role in dopamine circuit regulation, diet-induced obesity, and drug consumption. ENeuro. https://doi.org/10.1523/eneuro.0122-15.2016

    Article  PubMed  PubMed Central  Google Scholar 

  65. Stumpf WE, Sar M, Clark SA, DeLuca HF (1982) Brain target sites for 1,25-dihydroxyvitamin D3. Science (New York, NY) 215:1403–1405. https://doi.org/10.1126/science.6977846

    Article  ADS  CAS  Google Scholar 

  66. Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ (2005) Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. J Chem Neuroanat 29:21–30. https://doi.org/10.1016/j.jchemneu.2004.08.006

    Article  CAS  PubMed  Google Scholar 

  67. Cui X, Pelekanos M, Liu PY, Burne TH, McGrath JJ, Eyles DW (2013) The vitamin D receptor in dopamine neurons; its presence in human substantia nigra and its ontogenesis in rat midbrain. Neuroscience 236:77–87. https://doi.org/10.1016/j.neuroscience.2013.01.035

    Article  CAS  PubMed  Google Scholar 

  68. Prüfer K, Veenstra TD, Jirikowski GF, Kumar R (1999) Distribution of 1,25-dihydroxyvitamin D3 receptor immunoreactivity in the rat brain and spinal cord. J Chem Neuroanat 16:135–145. https://doi.org/10.1016/s0891-0618(99)00002-2

    Article  PubMed  Google Scholar 

  69. Kesby JP, Turner KM, Alexander S, Eyles DW, McGrath JJ, Burne THJ (2017) Developmental vitamin D deficiency alters multiple neurotransmitter systems in the neonatal rat brain. Int J Dev Neurosci 62:1–7. https://doi.org/10.1016/j.ijdevneu.2017.07.002

    Article  CAS  PubMed  Google Scholar 

  70. Kesby JP, Cui X, O’Loan J, McGrath JJ, Burne TH, Eyles DW (2010) Developmental vitamin D deficiency alters dopamine-mediated behaviors and dopamine transporter function in adult female rats. Psychopharmacology 208:159–168. https://doi.org/10.1007/s00213-009-1717-y

    Article  CAS  PubMed  Google Scholar 

  71. Zhu S, Zhao C, Wu Y, Yang Q, Shao A, Wang T, Wu J, Yin Y, Li Y, Hou J, Zhang X, Zhou G, Gu X, Wang X, Bustelo XR, Zhou J (2015) Identification of a Vav2-dependent mechanism for GDNF/Ret control of mesolimbic DAT trafficking. Nat Neurosci 18:1084–1093. https://doi.org/10.1038/nn.4060

    Article  CAS  PubMed  Google Scholar 

  72. Luan W, Hammond LA, Vuillermot S, Meyer U, Eyles DW (2018) Maternal Vitamin D Prevents Abnormal Dopaminergic Development and Function in a Mouse Model of Prenatal Immune Activation. Sci Rep 8:9741. https://doi.org/10.1038/s41598-018-28090-w

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sedaghat K, Yousefian Z, Vafaei AA, Rashidy-Pour A, Parsaei H, Khaleghian A, Choobdar S (2019) Mesolimbic dopamine system and its modulation by vitamin D in a chronic mild stress model of depression in the rat. Behav Brain Res 356:156–169. https://doi.org/10.1016/j.bbr.2018.08.020

    Article  CAS  PubMed  Google Scholar 

  74. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science (New York, NY) 260:1130–1132. https://doi.org/10.1126/science.8493557

    Article  ADS  CAS  Google Scholar 

  75. Lin CI, Chang YC, Kao NJ, Lee WJ, Cross TW, Lin SH (2020) 1,25(OH)2D3 Alleviates aβ(25–35)-induced tau hyperphosphorylation, excessive reactive oxygen species, and apoptosis through interplay with glial cell line-derived neurotrophic factor signaling in sh-sy5y cells. Int J Mol Sci. https://doi.org/10.3390/ijms21124215

    Article  PubMed  PubMed Central  Google Scholar 

  76. Naveilhan P, Neveu I, Wion D, Brachet P (1996) 1,25-Dihydroxyvitamin D3, an inducer of glial cell line-derived neurotrophic factor. NeuroReport 7:2171–2175. https://doi.org/10.1097/00001756-199609020-00023

    Article  CAS  PubMed  Google Scholar 

  77. Sanchez B, Lopez-Martin E, Segura C, Labandeira-Garcia JL, Perez-Fernandez R (2002) 1,25-Dihydroxyvitamin D(3) increases striatal GDNF mRNA and protein expression in adult rats. Brain Res Mol Brain Res 108:143–146. https://doi.org/10.1016/s0169-328x(02)00545-4

    Article  CAS  PubMed  Google Scholar 

  78. Orme RP, Bhangal MS, Fricker RA (2013) Calcitriol imparts neuroprotection in vitro to midbrain dopaminergic neurons by upregulating GDNF expression. PLoS ONE 8:e62040. https://doi.org/10.1371/journal.pone.0062040

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Talent Reserve Program (TRP) of the First Hospital of Jilin University (JDYY-TRP-2024011) and the 2021 Pediatric Endocrinology Research Foundation for Young and Middle-aged Physicians (Z-2019–41-2101–01) sponsored this work.

Author information

Authors and Affiliations

Authors

Contributions

HL and FJ designed the research and provided funding; HL and XW drafted the manuscript; BW and XW participated in the process of this research and collected the data; HL and FJ contributed to the study concept and manuscript revision. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Fei-Yong Jia.

Ethics declarations

Conflict of interest

The authors declare that the research was carried out without any commercial or financial commitments that may become potential conflicts of interest.

Ethical approval

The study was approved by the Ethics Committee of Chongqing Western Biological Experimental Animal Ethics Committee (No: WST20220303S0401231[001]; Date of approval: March 3, 2022).

Informed consent

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors contributed to the article and approved the submitted version.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HH., Wang, XF., Wang, B. et al. Vitamin D3 improves iminodipropionitrile-induced tic-like behavior in rats through regulation of GDNF/c-Ret signaling activity. Eur Child Adolesc Psychiatry (2024). https://doi.org/10.1007/s00787-024-02376-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00787-024-02376-z

Keywords

Navigation