Skip to main content

Advertisement

Log in

Emotional intelligence mediates the protective role of the orbitofrontal cortex spontaneous activity measured by fALFF against depressive and anxious symptoms in late adolescence

  • Original Contribution
  • Published:
European Child & Adolescent Psychiatry Aims and scope Submit manuscript

Abstract

As a stable personality construct, trait emotional intelligence (TEI) refers to a battery of perceived emotion-related skills that make individuals behave effectively to adapt to the environment and maintain well-being. Abundant evidence has consistently shown that TEI is important for the outcomes of many mental health issues, particularly depression and anxiety. However, the neural substrates involved in TEI and the underlying neurobehavioral mechanism of how TEI reduces depression and anxiety symptoms remain largely unknown. Herein, resting-state functional magnetic resonance imaging and a group of behavioral measures were applied to examine these questions among a large sample comprising 231 general adolescent students aged 16–20 years (52% female). Whole-brain correlation analysis and prediction analysis demonstrated that TEI was negatively linked with spontaneous activity (measured with the fractional amplitude of low-frequency fluctuations) in the bilateral medial orbitofrontal cortex (OFC), a critical site implicated in emotion-related processes. Furthermore, structural equation modeling analysis found that TEI mediated the link of OFC spontaneous activity to depressive and anxious symptoms. Collectively, the current findings present new evidence for the neurofunctional bases of TEI and suggest a potential “brain–personality–symptom” pathway for alleviating depressive and anxious symptoms among students in late adolescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data and code that support the findings of this study are available from the corresponding author upon reasonable request. The data and code sharing adopted by the authors comply with the requirements of the funding institute and the institutional ethics approval.

References

  1. Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, Charlson FJ, Norman RE, Flaxman AD, Johns N, Burstein R, Murray CJ, Vos T (2013) Global burden of disease attributable to mental and substance use disorders: findings from the global burden of disease study 2010. Lancet 382(9904):1575–1586

    Article  PubMed  Google Scholar 

  2. Steel Z, Marnane C, Iranpour C, Chey T, Jackson JW, Patel V, Silove D (2014) The global prevalence of common mental disorders: a systematic review and meta-analysis 1980–2013. Int J Epidemiol 43(2):476–493

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cummings CM, Caporino NE, Kendall PC (2014) Comorbidity of anxiety and depression in children and adolescents: 20 years after. Psychol Bull 140(3):816–845

    Article  PubMed  Google Scholar 

  4. Middeldorp CM, Cath DC, Van Dyck R, Boomsma DI (2005) The co-morbidity of anxiety and depression in the perspective of genetic epidemiology a review of twin and family studies. Psychol Med 35(5):611–624

    Article  CAS  PubMed  Google Scholar 

  5. Williams LM (2016) Precision psychiatry: a neural circuit taxonomy for depression and anxiety. Lancet Psychiat 3(5):472–480

    Article  Google Scholar 

  6. Kotov R, Gamez W, Schmidt F, Watson D (2010) Linking “big” personality traits to anxiety, depressive, and substance use disorders: a meta-analysis. Psychol Bull 136(5):768–821

    Article  PubMed  Google Scholar 

  7. Dolcos S, Hu Y, Iordan AD, Moore M, Dolcos F (2016) Optimism and the brain: trait optimism mediates the protective role of the orbitofrontal cortex gray matter volume against anxiety. Soc Cogn Affect Neurosci 11(2):263–271

    Article  PubMed  Google Scholar 

  8. Moore M, Culpepper S, Phan KL, Strauman TJ, Dolcos F, Dolcos S (2018) Neurobehavioral mechanisms of resilience against emotional distress: an integrative brain-personality-symptom approach using structural equation modeling. Personality Neurosci 1:1–10

    Article  Google Scholar 

  9. Wang S, Zhao Y, Zhang L, Wang X, Wang X, Cheng B, Luo K, Gong Q (2019) Stress and the brain: perceived stress mediates the impact of the superior frontal gyrus spontaneous activity on depressive symptoms in late adolescence. Hum Brain Mapp 40(17):4982–4993

    Article  PubMed  PubMed Central  Google Scholar 

  10. Salovey P, Mayer JD (1990) Emotional intelligence. Imagin Cogn Pers 9(3):185–211

    Article  Google Scholar 

  11. Petrides KV, Mikolajczak M, Mavroveli S, Sanchez-Ruiz M-J, Furnham A, Perez-Gonzalez J-C (2016) Developments in trait emotional intelligence research. Emot Rev 8(4):335–341

    Article  Google Scholar 

  12. Martins A, Ramalho N, Morin E (2010) A comprehensive meta-analysis of the relationship between emotional intelligence and health. Personal Individ Differ 49(6):554–564

    Article  Google Scholar 

  13. Fernandez-Berrocal P, Alcaide R, Extremera N, Pizarro D (2006) The role of emotional intelligence in anxiety and depression among adolescents. Individ Differ Res 4(1):16–27

    Google Scholar 

  14. Aradilla-Herrero A, Tomas-Sabado J, Gomez-Benito J (2014) Associations between emotional intelligence, depression and suicide risk in nursing students. Nurse Educ Today 34(4):520–525

    Article  PubMed  Google Scholar 

  15. Foster B, Lomas J, Downey L, Stough C (2018) Does Emotional intelligence mediate the relation between mindfulness and anxiety and depression in adolescents? Front Psychol 9:2463

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhao JX, Xiang YH, Zhang WR, Dong X, Zhao JJ, Li QY (2020) Childhood maltreatment affects depression and anxiety: the mediating role of emotional intelligence. Int J Ment Health Addict Adv 19(6):2021–2030

    Article  Google Scholar 

  17. Downey LA, Johnston PJ, Hansen K, Schembri R, Stough C, Tuckwell V, Schweitzer I (2008) The relationship between emotional intelligence and depression in a clinical sample. Eur J Psychiatry 22(2):93–98

    Article  Google Scholar 

  18. Lizeretti NP, Extremera N, Rodriguez A (2012) Perceived emotional intelligence and clinical symptoms in mental disorders. Psychiatr Q 83(4):407–418

    Article  PubMed  Google Scholar 

  19. Amirifard N, Payandeh M, Aeinfar M, Sadeghi M, Sadeghi E, Ghafarpor S (2017) A survey on the relationship between emotional intelligence and level of depression and anxiety among women with breast cancer. Int J Hematol-Oncol Stem Cell Res 11(1):54–57

    PubMed  PubMed Central  Google Scholar 

  20. Baudry A-S, Anota A, Mariette C, Bonnetain F, Renaud F, Piessen G, Christophe V, Grp FW (2019) The role of trait emotional intelligence in quality of life, anxiety and depression symptoms after surgery for esophageal or gastric cancer: a french national database FREGAT. Psychooncology 28(4):799–806

    Article  PubMed  Google Scholar 

  21. Ciarrochi J, Scott G (2006) The link between emotional competence and well-being: a longitudinal study. Br J Guid Couns 34(2):231–243

    Article  Google Scholar 

  22. Salguero JM, Palomera R, Fernandez-Berrocal P (2012) Perceived emotional intelligence as predictor of psychological adjustment in adolescents: a 1-year prospective study. Eur J Psychol Educ 27(1):21–34

    Article  Google Scholar 

  23. Gomez-Baya D, Mendoza R, Paino S (2016) Perceived emotional intelligence as a predictor of depressive symptoms after a one year follow-up during adolescence. Int J Emot Educ 8(1):35–47

    Google Scholar 

  24. Gomez-Baya D, Mendoza R, Paino S, de Matos MG (2017) Perceived emotional intelligence as a predictor of depressive symptoms during mid-adolescence: a two-year longitudinal study on gender differences. Personal Individ Differ 104:303–312

    Article  Google Scholar 

  25. Nelis D, Kotsou I, Quoidbach J, Hansenne M, Weytens F, Dupuis P, Mikolajczak M (2011) Increasing emotional competence improves psychological and physical well-being, social relationships, and employability. Emotion 11(2):354–366

    Article  PubMed  Google Scholar 

  26. Ruiz-Aranda D, Castillo R, Salguero JM, Cabello R, Fernández-Berrocal P, Balluerka N (2012) Short- and midterm effects of emotional intelligence training on adolescent mental health. J Adolesc Health: Off Publ Soc Adolesc Med 51(5):462–467

    Article  Google Scholar 

  27. Bar-On R, Tranel D, Denburg NL, Bechara A (2003) Exploring the neurological substrate of emotional and social intelligence. Brain 126(Pt 8):1790–1800

    Article  PubMed  Google Scholar 

  28. Killgore WD, Yurgelun-Todd DA (2007) Neural correlates of emotional intelligence in adolescent children. Cogn Affect Behav Neurosci 7(2):140–151

    Article  PubMed  Google Scholar 

  29. Kreifelts B, Ethofer T, Huberle E, Grodd W, Wildgruber D (2010) Association of trait emotional intelligence and individual fMRI-activation patterns during the perception of social signals from voice and face. Hum Brain Mapp 31(7):979–991

    Article  PubMed  Google Scholar 

  30. Smith R, Alkozei A, Killgore WDS (2017) Contributions of self-report and performance-based individual differences measures of social cognitive ability to large-scale neural network functioning. Brain Imaging Behav 11(3):685–697

    Article  PubMed  Google Scholar 

  31. Smith R, Killgore WDS, Alkozei A, Lane RD (2018) A neuro-cognitive process model of emotional intelligence. Biol Psychol 139:131–151

    Article  PubMed  Google Scholar 

  32. Lv H, Wang Z, Tong E, Williams LM, Zaharchuk G, Zeineh M, Goldstein-Piekarski AN, Ball TM, Liao C, Wintermark M (2018) Resting-state functional MRI: everything that nonexperts have always wanted to know. AJNR Am J Neuroradiol 39(8):1390–1399

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Takeuchi H, Taki Y, Nouchi R, Sekiguchi A, Hashizume H, Sassa Y, Kotozaki Y, Miyauchi CM, Yokoyama R, Iizuka K, Nakagawa S, Nagase T, Kunitoki K, Kawashima R (2013) Resting state functional connectivity associated with trait emotional intelligence. Neuroimage 83:318–328

    Article  PubMed  Google Scholar 

  34. Kong F, Ma X, You X, Xiang Y (2018) The resilient brain: psychological resilience mediates the effect of amplitude of low-frequency fluctuations in orbitofrontal cortex on subjective well-being in young healthy adults. Soc Cogn Affect Neurosci 13(7):755–763

    Article  PubMed  PubMed Central  Google Scholar 

  35. Killgore WD (2013) Self-reported sleep correlates with prefrontal-amygdala functional connectivity and emotional functioning. Sleep 36(11):1597–1608

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pan W, Wang T, Wang X, Hitchman G, Wang L, Chen A (2014) Identifying the core components of emotional intelligence: evidence from amplitude of low-frequency fluctuations during resting state. PLoS ONE 9(10):e111435

    Article  PubMed  PubMed Central  Google Scholar 

  37. Blakemore S-J (2019) Adolescence and mental health. Lancet 393(10185):2030–2031

    Article  PubMed  Google Scholar 

  38. Zou QH, Zhu CZ, Yang Y, Zuo XN, Long XY, Cao QJ, Wang YF, Zang YF (2008) An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods 172(1):137–141

    Article  PubMed  PubMed Central  Google Scholar 

  39. Palazidou E (2012) The neurobiology of depression. Br Med Bull 101(1):127–145

    Article  CAS  PubMed  Google Scholar 

  40. Grupe DW, Nitschke JB (2013) Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. Nat Rev Neurosci 14(7):488–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang S, Xu X, Zhou M, Chen T, Yang X, Chen G, Gong Q (2017) Hope and the brain: trait hope mediates the protective role of medial orbitofrontal cortex spontaneous activity against anxiety. Neuroimage 157:439–447

    Article  PubMed  Google Scholar 

  42. Lai H, Wang S, Zhao Y, Qiu C, Gong Q (2020) Neurostructural correlates of optimism: Gray matter density in the putamen predicts dispositional optimism in late adolescence. Hum Brain Mapp 41(6):1459–1471

    Article  PubMed  Google Scholar 

  43. Oldfield RC (1971) The assessment and analysis of handedness: the edinburgh inventory. Neuropsychologia 9(1):97–113

    Article  CAS  PubMed  Google Scholar 

  44. Law KS, Wong CS, Song LJ (2004) The construct and criterion validity of emotional intelligence and its potential utility for management studies. J Appl Psychol 89(3):483–496

    Article  PubMed  Google Scholar 

  45. Li T, Saklofske DH, Bowden SC, Yan G, Fung TS (2012) The Measurement invariance of the wong and law emotional intelligence scale (WLEIS) across three Chinese university student groups from Canada and China. J Psychoeduc Assess 30(4):439–452

    Article  CAS  Google Scholar 

  46. Kong F (2017) The validity of the wong and law emotional intelligence scale in a Chinese sample: tests of measurement invariance and latent mean differences across gender and age. Personality Individ Differ 116:29–31

    Article  Google Scholar 

  47. Beck AT, Steer RA, Garbin MG (1988) Psychometric properties of the beck depression inventory: twenty-five years of evaluation. Clin Psychol Rev 8(1):77–100

    Article  Google Scholar 

  48. Chen L, Wang L, Qiu XH, Yang XX, Qiao ZX, Yang YJ, Liang Y (2013) Depression among Chinese university students: prevalence and socio-demographic correlates. PLoS ONE 8(3):e58379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cheng J, Zhao YY, Wang J, Sun YH (2020) Academic burnout and depression of Chinese medical students in the pre-clinical years: the buffering hypothesis of resilience and social support. Psychol Health Med 25(9):1094–1105

    Article  CAS  PubMed  Google Scholar 

  50. Spielberger CD (1983) Manual for the state-trait anxiety inventory STAI (Form Y). Mind Garden, Palo Alto, CA

    Google Scholar 

  51. Li HC, Lopez V (2004) Psychometric evaluation of the chinese version of the state anxiety scale for children. Res Nurs Health 27(3):198–207

    Article  PubMed  Google Scholar 

  52. Tian X, Wei D, Du X, Wang K, Yang J, Liu W, Meng J, Liu H, Liu G, Qiu J (2016) Assessment of trait anxiety and prediction of changes in state anxiety using functional brain imaging: a test-retest study. Neuroimage 133:408–416

    Article  PubMed  Google Scholar 

  53. Farah MJ (2017) The neuroscience of socioeconomic status: correlates, causes, and consequences. Neuron 96(1):56–71

    Article  CAS  PubMed  Google Scholar 

  54. Harrod NR, Scheer SD (2005) An exploration of adolescent emotional intelligence in relation to demographic characteristics. Adolescence 40(159):503–512

    PubMed  Google Scholar 

  55. Naik B (2014) Sex and socioeconomic status influence on emotional intelligence among college students. Indian J Health Well Being 5(7):111–113

    Google Scholar 

  56. Lorant V, Deliège D, Eaton W, Robert A, Philippot P, Ansseau M (2003) Socioeconomic inequalities in depression: a meta-analysis. Am J Epidemiol 157(2):98–112

    Article  CAS  PubMed  Google Scholar 

  57. Zhu Y, Chen X, Zhao H, Chen M, Tian Y, Liu C, Han ZR, Lin X, Qiu J, Xue G, Shu H, Qin S (2019) Socioeconomic status disparities affect children’s anxiety and stress-sensitive cortisol awakening response through parental anxiety. Psychoneuroendocrinology 103:96–103

    Article  PubMed  Google Scholar 

  58. Adler NE, Epel ES, Castellazzo G, Ickovics JR (2000) Relationship of subjective and objective social status with psychological and physiological functioning: preliminary data in healthy white women. Health Psychol: Off J Div Health Psychol, Am Psychological Assoc 19(6):586–592

    Article  CAS  Google Scholar 

  59. Kong F, Yang K, Sajjad S, Yan W, Li X, Zhao J (2019) Neural correlates of social well-being: gray matter density in the orbitofrontal cortex predicts social well-being in emerging adulthood. Soc Cogn Affect Neurosci 14(3):319–327

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wang S, Zhao Y, Li J, Lai H, Qiu C, Pan N, Gong Q (2020) Neurostructural correlates of hope: dispositional hope mediates the impact of the SMA gray matter volume on subjective well-being in late adolescence. Soc Cogn Affect Neurosci 15(4):395–404

    Article  PubMed  PubMed Central  Google Scholar 

  61. Yan CG, Wang XD, Zuo XN, Zang YF (2016) DPABI: data processing and analysis for (resting-state) brain imaging. Neuroinformatics 14(3):339–351

    Article  PubMed  Google Scholar 

  62. Song XW, Dong ZY, Long XY, Li SF, Zuo XN, Zhu CZ, He Y, Yan CG, Zang YF (2011) REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS ONE 6(9):e25031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cox CL, Uddin LQ, Di Martino A, Castellanos FX, Milham MP, Kelly C (2012) The balance between feeling and knowing: affective and cognitive empathy are reflected in the brain’s intrinsic functional dynamics. Soc Cogn Affect Neurosci 7(6):727–737

    Article  PubMed  Google Scholar 

  64. Supekar K, Swigart AG, Tenison C, Jolles DD, Rosenberg-Lee M, Fuchs L, Menon V (2013) Neural predictors of individual differences in response to math tutoring in primary-grade school children. Proc Natl Acad Sci USA 110(20):8230–8235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Evans TM, Kochalka J, Ngoon TJ, Wu SS, Qin S, Battista C, Menon V (2015) Brain structural integrity and intrinsic functional connectivity forecast 6 year longitudinal growth in children’s numerical abilities. J Neurosci 35(33):11743–11750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Byrne BM (2016) Structural equation modeling with AMOS: basic concepts, applications, and programming, 3rd edn. Taylor and Francis/Routledge, UK

    Book  Google Scholar 

  67. Kline RB (2015) Principles and practice of structural equation modeling. Guilford publications, USA

    Google Scholar 

  68. Preacher KJ, Hayes AF (2008) Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav Res Methods 40(3):879–891

    Article  PubMed  Google Scholar 

  69. Koven NS, Roth RM, Garlinghouse MA, Flashman LA, Saykin AJ (2011) Regional gray matter correlates of perceived emotional intelligence. Soc Cogn Affect Neurosci 6(5):582–590

    Article  PubMed  Google Scholar 

  70. Takeuchi H, Taki Y, Sassa Y, Hashizume H, Sekiguchi A, Fukushima A, Kawashima R (2011) Regional gray matter density associated with emotional intelligence: evidence from voxel-based morphometry. Hum Brain Mapp 32(9):1497–1510

    Article  PubMed  Google Scholar 

  71. Killgore WD, Weber M, Schwab ZJ, Deldonno SR, Kipman M, Weiner MR, Rauch SL (2012) Gray matter correlates of trait and ability models of emotional intelligence. NeuroReport 23(9):551–555

    Article  PubMed  Google Scholar 

  72. Tan Y, Zhang Q, Li W, Wei D, Qiao L, Qiu J, Hitchman G, Liu Y (2014) The correlation between emotional intelligence and gray matter volume in university students. Brain Cogn 91:100–107

    Article  PubMed  Google Scholar 

  73. He L, Mao Y, Sun J, Zhuang K, Zhu X, Qiu J, Chen X (2018) Examining brain structures associated with emotional intelligence and the mediated effect on trait creativity in young adults. Front Psychol 9:925

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hogeveen J, Salvi C, Grafman J (2016) ‘Emotional intelligence’: lessons from lesions. Trends Neurosci 39(10):694–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kringelbach ML (2005) The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci 6(9):691–702

    Article  CAS  PubMed  Google Scholar 

  76. Rempel-Clower NL (2007) Role of orbitofrontal cortex connections in emotion. Ann NY Acad Sci 1121:72–86

    Article  PubMed  Google Scholar 

  77. Elliott R, Deakin B (2005) Role of the orbitofrontal cortex in reinforcement processing and inhibitory control: evidence from functional magnetic resonance imaging studies in healthy human subjects. Int Rev Neurobiol 65:89–116

    Article  PubMed  Google Scholar 

  78. Ragozzino ME (2007) The contribution of the medial prefrontal cortex, orbitofrontal cortex, and dorsomedial striatum to behavioral flexibility. Ann NY Acad Sci 1121:355–375

    Article  PubMed  Google Scholar 

  79. Schoenbaum G, Roesch MR, Stalnaker TA, Takahashi YK (2009) A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nat Rev Neurosci 10(12):885–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jiao Q, Ding J, Lu G, Su L, Zhang Z, Wang Z, Zhong Y, Li K, Ding M, Liu Y (2011) Increased activity imbalance in fronto-subcortical circuits in adolescents with major depression. PLoS ONE 6(9):e25159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kong F, Hu S, Wang X, Song Y, Liu J (2015) Neural correlates of the happy life: the amplitude of spontaneous low frequency fluctuations predicts subjective well-being. Neuroimage 107:136–145

    Article  PubMed  Google Scholar 

  82. Kong F, Zhao J (2013) Affective mediators of the relationship between trait emotional intelligence and life satisfaction in young adults. Personality Individ Differ 54(2):197–201

    Article  Google Scholar 

  83. Mellão N, Mónico LSM (2013) The relation between emotional intelligence and psychological capital of employees. Int J Dev Educ Psychol 2:545–550

    Google Scholar 

  84. Graham J, Salimi-Khorshidi G, Hagan C, Walsh N, Goodyer I, Lennox B, Suckling J (2013) Meta-analytic evidence for neuroimaging models of depression: state or trait? J Affect Disord 151(2):423–431

    Article  PubMed  Google Scholar 

  85. Groenewold NA, Opmeer EM, de Jonge P, Aleman A, Costafreda SG (2013) Emotional valence modulates brain functional abnormalities in depression: evidence from a meta-analysis of fMRI studies. Neurosci Biobehav Rev 37(2):152–163

    Article  PubMed  Google Scholar 

  86. Qiu C, Feng Y, Meng Y, Liao W, Huang X, Lui S, Zhu C, Chen H, Gong Q, Zhang W (2015) Analysis of altered baseline brain activity in drug-naive adult patients with social anxiety disorder using resting-state functional MRI. Psychiatry Investig 12(3):372–380

    Article  PubMed  PubMed Central  Google Scholar 

  87. Killgore WD, Yurgelun-Todd DA (2006) Ventromedial prefrontal activity correlates with depressed mood in adolescent children. NeuroReport 17(2):167–171

    Article  PubMed  Google Scholar 

  88. Xue SW, Lee TW, Guo YH (2018) Spontaneous activity in medial orbitofrontal cortex correlates with trait anxiety in healthy male adults. J Zhejiang Univ Sci B 19(8):643–653

    Article  PubMed  PubMed Central  Google Scholar 

  89. Koolschijn PC, van Haren NE, Lensvelt-Mulders GJ, Hulshoff Pol HE, Kahn RS (2009) Brain volume abnormalities in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Hum Brain Mapp 30(11):3719–3735

    Article  PubMed  PubMed Central  Google Scholar 

  90. Arnone D, McIntosh AM, Ebmeier KP, Munafò MR, Anderson IM (2012) Magnetic resonance imaging studies in unipolar depression: systematic review and meta-regression analyses. Eur Neuropsychopharmacol: J Eur Coll Neuropsychopharmacol 22(1):1–16

    Article  CAS  Google Scholar 

  91. Talati A, Pantazatos SP, Schneier FR, Weissman MM, Hirsch J (2013) Gray matter abnormalities in social anxiety disorder: primary, replication, and specificity studies. Biol Psychiatry 73(1):75–84

    Article  PubMed  Google Scholar 

  92. Blackmon K, Barr WB, Carlson C, Devinsky O, DuBois J, Pogash D, Quinn BT, Kuzniecky R, Halgren E, Thesen T (2011) Structural evidence for involvement of a left amygdala-orbitofrontal network in subclinical anxiety. Psychiatry Res 194(3):296–303

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ducharme S, Albaugh MD, Hudziak JJ, Botteron KN, Nguyen TV, Truong C, Evans AC, Karama S (2014) Anxious/depressed symptoms are linked to right ventromedial prefrontal cortical thickness maturation in healthy children and young adults. Cereb Cortex 24(11):2941–2950

    Article  PubMed  Google Scholar 

  94. Szymkowicz SM, McLaren ME, Kirton JW, O’Shea A, Woods AJ, Manini TM, Anton SD, Dotson VM (2016) Depressive symptom severity is associated with increased cortical thickness in older adults. Int J Geriatr Psychiatry 31(4):325–333

    Article  PubMed  Google Scholar 

  95. Downar J, Daskalakis ZJ (2013) New targets for rTMS in depression: a review of convergent evidence. Brain Stimul 6(3):231–240

    Article  PubMed  Google Scholar 

  96. Scheinost D, Stoica T, Saksa J, Papademetris X, Constable RT, Pittenger C, Hampson M (2013) Orbitofrontal cortex neurofeedback produces lasting changes in contamination anxiety and resting-state connectivity. Transl Psychiatry 3(4):e250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ladouceur CD, Dahl RE, Williamson DE, Birmaher B, Ryan ND, Casey BJ (2005) Altered emotional processing in pediatric anxiety, depression, and comorbid anxiety-depression. J Abnorm Child Psychol 33(2):165–177

    Article  PubMed  Google Scholar 

  98. Van de Mortel TF (2008) Faking it: social desirability response bias in self-report research. Aust J Adv Nurs 25(4):40–48

    Google Scholar 

  99. Somandepalli K, Kelly C, Reiss PT, Zuo XN, Craddock RC, Yan CG, Petkova E, Castellanos FX, Milham MP, Di Martino A (2015) Short-term test-retest reliability of resting state fMRI metrics in children with and without attention-deficit/hyperactivity disorder. Dev Cogn Neurosci 15:83–93

    Article  PubMed  PubMed Central  Google Scholar 

  100. Zuo XN, Xing XX (2014) Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective. Neurosci Biobehav Rev 45:100–118

    Article  PubMed  Google Scholar 

  101. Zhang JF, Liu DQ, Qian SF, Qu XJ, Zhang PW, Ding N, Zang YF (2022) The neural correlates of amplitude of low-frequency fluctuation: a multimodal resting-state MEG and fMRI-EEG study. Cereb Cortex. https://doi.org/10.1093/cercor/bhac124

    Article  PubMed  PubMed Central  Google Scholar 

  102. Zuo XN, Di Martino A, Kelly C, Shehzad ZE, Gee DG, Klein DF, Castellanos FX, Biswal BB, Milham MP (2010) The oscillating brain: complex and reliable. Neuroimage 49(2):1432–1445

    Article  PubMed  Google Scholar 

  103. Mao DW, Ding ZX, Jia WB, Liao W, Li X, Huang HY, Yuan JH, Zang YF, Zhang H (2015) Low-frequency fluctuations of the resting brain: High magnitude does not equal high reliability. PLoS ONE 10(6):e0128117

    Article  PubMed  PubMed Central  Google Scholar 

  104. Gong QY (2020) Psychoradiology, Neuroimaging Clinics of North America 30, (1–123). Elsevier Inc, New York

    Google Scholar 

  105. Li F, Sun HQ, Biswal BB, Sweeney JA, Gong QY (2021) Artificial intelligence applications in psychoradiology. Psychoradiology 1(2):94–107

    Google Scholar 

  106. Lui S, Zhou XHJ, Sweeney JA, Gong QY (2016) Psychoradiology: the frontier of neuroimaging in psychiatry. Radiology 281(2):357–372

    Article  PubMed  Google Scholar 

  107. Sun HQ, Lui S, Yao L, Deng W, Xiao Y, Zhang W, Huang XQ, Hu J, Bi F, Li T, Sweeney JA, Gong QY (2015) Two patterns of white matter abnormalities in medication-naive patients with first-episode schizophrenia revealed by diffusion tensor imaging and cluster analysis. JAMA Psychiatry 72(7):678–686

    Article  PubMed  Google Scholar 

  108. Zhang X, Suo XL, Yang X, Lai H, Pan NF, He M, Li QY, Kuang WH, Wang S, Gong QY (2022) Structural and functional deficits and couplings in the cortico-striato-thalamo-cerebellar circuitry in social anxiety disorder. Transl Psychiatry 12:26

    Article  PubMed  PubMed Central  Google Scholar 

  109. Suo XL, Zuo C, Lan H, Pan N, Zhang X, Kemp GJ, Wang S, Gong QY (2022) COVID-19 vicarious traumatization links functional connectome to general distress. NeuroImage 255:119185

    Article  CAS  PubMed  Google Scholar 

  110. Pan N, Wang S, Zhao Y, Lai H, Qin K, Li J, Biswal BB, Sweeney JA, Gong QY (2021) Brain gray matter structures associated with trait impulsivity: A systematic review and voxel-based meta-analysis. Hum Brain Mapp 42(7):2214–2235

    Article  PubMed  PubMed Central  Google Scholar 

  111. Lai H, Kong XZ, Zhao YJ, Pan NF, Zhang X, He M, Wang S, Gong QY (2022) Patterns of a structural covariance network associated with dispositional optimism during late adolescence. NeuroImage 251:119009

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 81820108018, 82027808, 81621003 and 31800963), the Sichuan Science and Technology Program (No. 2022YFS0178), and the Post-Doctor Research Project, West China Hospital, Sichuan University (Grant No. 2020HXBH092).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Song Wang or Qiyong Gong.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

The study was approved by the local research ethics committee of West China Hospital of Sichuan University.

Consent to participate

All participants and their guardians gave their written informed consent before the experiments.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 824 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Cheng, B., Yang, X. et al. Emotional intelligence mediates the protective role of the orbitofrontal cortex spontaneous activity measured by fALFF against depressive and anxious symptoms in late adolescence. Eur Child Adolesc Psychiatry 32, 1957–1967 (2023). https://doi.org/10.1007/s00787-022-02020-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00787-022-02020-8

Keywords

Navigation