Reported autism diagnosis is associated with psychotic-like symptoms in the Adolescent Brain Cognitive Development cohort


Although the schizophrenia (SCZ) rate is increased in autism spectrum disorder (ASD), it is difficult to identify which ASD youth will develop psychosis. We explored the relationship between ASD and emerging psychotic-like experiences (PLS) in a sample of 9127 youth aged 9–11 from the Adolescent Brain Cognitive Development (ABCD) cohort. We predicted that parent-reported ASD would be associated with PLS severity, and that ASD youth with PLS (ASD+/PLS+) would differ from ASD youth without PLS (ASD+/PLS−) and youth with PLS but not ASD (ASD−/PLS+) in cognitive function. We fit regression models that included parent-reported ASD, family history of psychosis, lifetime trauma, executive function, processing speed, working memory, age, sex, race, ethnicity, and income-to-needs ratio as predictors of Prodromal Questionnaire-Brief Child (PQ-BC) distress score, a continuous index of PLS severity. We assessed cognitive differences using regression models with ASD/PLS status and relevant covariates as predictors of NIH Toolbox measures. ASD increased raw PQ-BC distress scores by 2.47 points (95% CI 1.33–3.61), an effect at least as large as Black race (1.27 points, 95% CI 0.75–1.78), family history of psychosis (1.05 points, 95% CI 0.56–1.54), and Latinx ethnicity (0.99 points, 95% CI 0.53–1.45. We did not identify differences in cognition for ASD+/PLS+ youth relative to other groups. Our finding of association between ASD and PLS in youth is consistent with previous literature and adds new information in suggesting that ASD may be a strong risk factor for PLS even compared to established SCZ risk factors.

This is a preview of subscription content, access via your institution.


  1. 1.

    Owen MJ, Sawa A, Mortensen PB (2016) Schizophrenia. Lancet 388:86–97.

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Lieberman JA, First MB (2018) Psychotic disorders. N Engl J Med 379:270–280.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Fett A-KJ, Velthorst E, Reichenberg A et al (2019) Long-term changes in cognitive functioning in individuals with psychotic disorders: findings from the Suffolk county mental health project. JAMA Psychiatry.

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Lord C, Brugha TS, Charman T et al (2020) Autism spectrum disorder. Nat Rev Dis Primers 6:1–23.

    Article  Google Scholar 

  5. 5.

    Simonoff E, Kent R, Stringer D et al (2019) Trajectories in symptoms of autism and cognitive ability in autism from childhood to adult life: findings from a longitudinal epidemiological cohort. J Am Acad Child Adolesc Psychiatry.

    Article  PubMed  Google Scholar 

  6. 6.

    Green MF, Horan WP, Lee J (2019) Nonsocial and social cognition in schizophrenia: current evidence and future directions. World Psychiatry 18:146–161.

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Freedman D, Brown AS (2011) The developmental course of executive functioning in schizophrenia. Int J Dev Neurosci 29:237–243.

    Article  PubMed  Google Scholar 

  8. 8.

    Demetriou EA, Lampit A, Quintana DS et al (2018) Autism spectrum disorders: a meta-analysis of executive function. Molecular Psychiatry 23:1198–1204.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Knowles EEM, David AS, Reichenberg A (2010) Processing speed deficits in schizophrenia: reexamining the evidence. AJP 167:828–835.

    Article  Google Scholar 

  10. 10.

    Haigh SM, Walsh JA, Mazefsky CA et al (2018) Processing speed is impaired in adults with autism spectrum disorder, and relates to social communication abilities. J Autism Dev Disord 48:2653–2662.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Forbes NF, Carrick LA, McIntosh AM, Lawrie SM (2009) Working memory in schizophrenia: a meta-analysis. Psychol Med 39:889–905.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Wang Y, Zhang Y-b, Liu L-l et al (2017) A meta-analysis of working memory impairments in autism spectrum disorders. Neuropsychol Rev 27:46–61.

    Article  PubMed  Google Scholar 

  13. 13.

    Consortium TB, Anttila V, Bulik-Sullivan B et al (2018) Analysis of shared heritability in common disorders of the brain. Science 360:8757.

    CAS  Article  Google Scholar 

  14. 14.

    Zheng Z, Zheng P, Zou X (2018) Association between schizophrenia and autism spectrum disorder: a systematic review and meta-analysis. Autism Res 11:1110–1119.

    Article  PubMed  Google Scholar 

  15. 15.

    Lai M-C, Kassee C, Besney R et al (2019) Prevalence of co-occurring mental health diagnoses in the autism population: a systematic review and meta-analysis. Lancet Psychiatry 6:819–829.

    Article  PubMed  Google Scholar 

  16. 16.

    de Pablo GS, Catalan A, Fusar-Poli P (2019) Clinical validity of DSM-5 attenuated psychosis syndrome: advances in diagnosis, prognosis, and treatment. JAMA Psychiatry.

    Article  Google Scholar 

  17. 17.

    Addington J, Stowkowy J, Liu L et al (2018) Clinical and functional characteristics of youth at clinical high-risk for psychosis who do not transition to psychosis. Psychol Med.

    Article  PubMed  Google Scholar 

  18. 18.

    Foss-Feig JH, Velthorst E, Smith L et al (2019) Clinical profiles and conversion rates among young individuals with autism spectrum disorder who present to clinical high risk for psychosis services. J Am Acad Child Adolesc Psychiatry.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Agerbo E, Sullivan PF, Vilhjálmsson BJ et al (2015) Polygenic risk score, parental socioeconomic status, family history of psychiatric disorders, and the risk for schizophrenia: a Danish population-based study and meta-analysis. JAMA Psychiatry 72:635–641.

    Article  PubMed  Google Scholar 

  20. 20.

    Lu Y, Pouget JG, Andreassen OA et al (2018) Genetic risk scores and family history as predictors of schizophrenia in Nordic registers. Psychol Med 48:1201–1208.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Morgan C, Gayer-Anderson C (2016) Childhood adversities and psychosis: evidence, challenges, implications. World Psychiatry 15:93–102.

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Bresnahan M, Begg MD, Brown A et al (2007) Race and risk of schizophrenia in a US birth cohort: another example of health disparity? Int J Epidemiol 36:751–758.

    Article  PubMed  Google Scholar 

  23. 23.

    Olbert CM, Nagendra A, Buck B (2018) Meta-analysis of Black vs. White racial disparity in schizophrenia diagnosis in the United States: Do structured assessments attenuate racial disparities? J Abnorm Psychol 127:104–115.

    Article  PubMed  Google Scholar 

  24. 24.

    Volkow ND, Koob GF, Croyle RT et al (2018) The conception of the ABCD study: from substance use to a broad NIH collaboration. Dev Cognitive Neurosci 32:4–7.

    Article  Google Scholar 

  25. 25.

    Garavan H, Bartsch H, Conway K et al (2018) Recruiting the ABCD sample: design considerations and procedures. Dev Cognitive Neurosci 32:16–22.

    CAS  Article  Google Scholar 

  26. 26.

    Loewy RL, Pearson R, Vinogradov S et al (2011) Psychosis risk screening with the Prodromal Questionnaire—Brief Version (PQ-B). Schizophr Res 129:42–46.

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Karcher NR, Barch DM, Avenevoli S et al (2018) Assessment of the Prodromal Questionnaire-Brief Child Version for measurement of self-reported psychoticlike experiences in childhood. JAMA Psychiatry.

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Kline E, Thompson E, Bussell K et al (2014) Psychosis-like experiences and distress among adolescents using mental health services. Schizophr Res 152:498–502.

    Article  PubMed  Google Scholar 

  29. 29.

    Savill M, D’Ambrosio J, Cannon TD, Loewy RL (2018) Psychosis risk screening in different populations using the Prodromal Questionnaire: a systematic review. Early Interv Psychiatry 12:3–14.

    Article  PubMed  Google Scholar 

  30. 30.

    Luciana M, Bjork JM, Nagel BJ et al (2018) Adolescent neurocognitive development and impacts of substance use: overview of the adolescent brain cognitive development (ABCD) baseline neurocognition battery. Dev Cognitive Neurosci 32:67–79.

    CAS  Article  Google Scholar 

  31. 31.

    Zelazo PD (2006) The dimensional change card sort (DCCS): a method of assessing executive function in children. Nat Protoc 1:297–301.

    Article  PubMed  Google Scholar 

  32. 32.

    Zelazo PD, Anderson JE, Richler J et al (2013) NIH toolbox cognition battery (CB): Measuring executive function and attention. Monogr Soc Res Child Dev 78:16–33.

    Article  PubMed  Google Scholar 

  33. 33.

    Carlozzi NE, Tulsky DS, Kail RV, Beaumont JL (2013) NIH toolbox cognition battery (CB): measuring processing speed. Monogr Soc Res Child Dev 78:88–102.

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Tulsky DS, Carlozzi NE, Chevalier N et al (2013) NIH toolbox cognition battery (CB): measuring working memory. Monogr Soc Res Child Dev 78:70–87.

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Gershon RC, Cook KF, Mungas D et al (2014) Language measures of the NIH toolbox cognition battery. J Int Neuropsychol Soci JINS 20:642–651.

    Article  Google Scholar 

  36. 36.

    Kaufman J, Birmaher B, Brent D et al (1997) Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry 36:980–988.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Barch DM, Albaugh MD, Avenevoli S et al (2018) Demographic, physical and mental health assessments in the adolescent brain and cognitive development study: rationale and description. Dev Cognitive Neurosci 32:55–66.

    Article  Google Scholar 

  38. 38.

    McLoyd VC (1998) Socioeconomic disadvantage and child development. Am Psychol 53:185.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Goldstein H, Browne W, Rasbash J (2002) Multilevel modelling of medical data. Stat Med 21:3291–3315.

    Article  PubMed  Google Scholar 

  40. 40.

    Mundry R, Nunn CL (2009) Stepwise model fitting and statistical inference: turning noise into signal pollution. Am Nat 173:119–123.

    Article  PubMed  Google Scholar 

  41. 41.

    Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142.

    Article  Google Scholar 

  42. 42.

    Gelman A (2008) Scaling regression inputs by dividing by two standard deviations. Stat Med 27:2865–2873.

    Article  PubMed  Google Scholar 

  43. 43.

    Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113.

    Article  Google Scholar 

  44. 44.

    Tukey JW (1977) Exploratory data analysis. Reading, MA

    Google Scholar 

  45. 45.

    Hanley JA, Negassa A, de Edwardes MD, Forrester JE (2003) Statistical analysis of correlated data using generalized estimating equations: An orientation. Am J Epidemiol 157:364–375.

    Article  PubMed  Google Scholar 

  46. 46.

    Team RC (2018) R: a language and environment for statistical computing. Austria, Vienna

    Google Scholar 

  47. 47.

    Radua J, Ramella-Cravaro V, Ioannidis JPA et al (2018) What causes psychosis? An umbrella review of risk and protective factors. World Psychiatry 17:49–66.

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Lord C, Elsabbagh M, Baird G, Veenstra-Vanderweele J (2018) Autism spectrum disorder. Lancet.

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Daniels AM, Rosenberg RE, Anderson C et al (2012) Verification of parent-report of child autism spectrum disorder diagnosis to a web-based autism registry. J Autism Dev Disord 42:257–265.

    Article  PubMed  Google Scholar 

  50. 50.

    Warnell F, George B, McConachie H et al (2015) Designing and recruiting to UK autism spectrum disorder research databases: do they include representative children with valid ASD diagnoses? BMJ Open.

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Selten J-P, Lundberg M, Rai D, Magnusson C (2015) Risks for nonaffective psychotic disorder and bipolar disorder in young people with autism spectrum disorder: a population-based study. JAMA Psychiatry 72:483–489.

    Article  PubMed  Google Scholar 

  52. 52.

    Schalbroeck R, Termorshuizen F, Visser E et al (2018) Risk of non-affective psychotic disorder or bipolar disorder in autism spectrum disorder: a longitudinal register-based study in the Netherlands. Psychol Med.

    Article  PubMed  Google Scholar 

  53. 53.

    van der Gaag RJ, Caplan R, van Engeland H et al (2005) A controlled study of formal thought disorder in children with autism and multiple complex developmental disorders. J Child Adolesc Psychopharmacol 15:465–476.

    Article  PubMed  Google Scholar 

  54. 54.

    Solomon M, Ozonoff S, Carter C, Caplan R (2008) Formal thought disorder and the autism spectrum: relationship with symptoms, executive control, and anxiety. J Autism Dev Disord 38:1474–1484.

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Cochran DM, Dvir Y, Frazier JA (2013) “Autism-plus” spectrum disorders: intersection with psychosis and the schizophrenia spectrum. Child Adolesc Psychiatr Clin N Am 22:609–627.

    Article  PubMed  Google Scholar 

  56. 56.

    Eussen MLJM, de Bruin EI, Van Gool AR et al (2015) Formal thought disorder in autism spectrum disorder predicts future symptom severity, but not psychosis prodrome. Eur Child Adolesc Psychiatry 24:163–172.

    Article  PubMed  Google Scholar 

  57. 57.

    Ziermans T, Swaab H, Stockmann A et al (2017) Formal thought disorder and executive functioning in children and adolescents with autism spectrum disorder: old leads and new avenues. J Autism Dev Disord 47:1756–1768.

    Article  PubMed  PubMed Central  Google Scholar 

Download references


This project was financially supported by a Whitaker Scholar in Developmental Neuropsychiatry Award to Dr. Jutla funded by the Marilyn and James Simons Foundation. Dr. Jutla's work was also supported by NIH 2T32MH016434­41, awarded to Drs. Jeremy Veenstra-VanderWeele and Rachel Marsh. The ABCD study is supported by the National Institutes of Health and additional federal partners under award numbers U01DA041022, U01DA041028, U01DA041048, U01DA041089, U01DA041106, U01DA041117, U01DA041120, U01DA041134, U01DA041148, U01DA041156, U01DA041174, U24DA041123, and U24DA041147. Information about the study’s supporters, participating sites, and study investigators can be found at Although ABCD investigators provided data, they did not participate in the analysis or writing of this report. This manuscript therefore reflects the views of the authors and does not necessarily reflect the opinions or views of the NIH or ABCD consortium investigators.

Author information



Corresponding author

Correspondence to Amandeep Jutla.

Ethics declarations

Conflict of interest

Dr. Veenstra-VanderWeele has consulted or served on an advisory board for Roche Pharmaceuticals, Novartis, and SynapDx; has received research funding from Roche Pharmaceuticals, Novartis, SynapDx, Seaside Therapeutics, and Forest; and has received an editorial stipend from Springer and Wiley. The remaining authors report no biomedical financial interests or potential conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jutla, A., Donohue, M.R., Veenstra-VanderWeele, J. et al. Reported autism diagnosis is associated with psychotic-like symptoms in the Adolescent Brain Cognitive Development cohort. Eur Child Adolesc Psychiatry (2021).

Download citation


  • Schizophrenia
  • Psychotic-like symptoms
  • Autism spectrum disorder
  • Neurodevelopmental disorders
  • Early diagnosis