European Child & Adolescent Psychiatry

, Volume 26, Issue 9, pp 1011–1030 | Cite as

The potential relevance of docosahexaenoic acid and eicosapentaenoic acid to the etiopathogenesis of childhood neuropsychiatric disorders

  • Alessandra Tesei
  • Alessandro CrippaEmail author
  • Silvia Busti Ceccarelli
  • Maddalena Mauri
  • Massimo Molteni
  • Carlo Agostoni
  • Maria Nobile


Over the last 15 years, considerable interest has been given to the potential role of omega-3 polyunsaturated fatty acids (PUFAs) for understanding pathogenesis and treatment of neurodevelopmental and psychiatric disorders. This review aims to systematically investigate the scientific evidence supporting the hypothesis on the omega-3 PUFAs deficit as a risk factor shared by different pediatric neuropsychiatric disorders. Medline PubMed database was searched for studies examining blood docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) status in children with neuropsychiatric disorders. Forty-one published manuscripts were compatible with the search criteria. The majority of studies on attention-deficit/hyperactivity disorder (ADHD) and autism found a significant decrease in DHA levels in patients versus healthy controls. For the other conditions examined—depression, juvenile bipolar disorder, intellectual disabilities, learning difficulties, and eating disorders (EDs)—the literature was too limited to draw any stable conclusions. However, except EDs, findings in these conditions were in line with results from ADHD and autism studies. Results about EPA levels were too inconsistent to conclude that EPA could be associated with any of the conditions examined. Finally, correlational data provided, on one hand, evidence for a negative association between DHA and symptomatology, whereas on the other hand, evidence for a positive association between EPA and emotional well-being. Although the present review underlines the potential involvement of omega-3 PUFAs in the predisposition to childhood neuropsychiatric disorders, more observational and intervention studies across different diagnoses are needed, which should integrate the collection of baseline PUFA levels with their potential genetic and environmental influencing factors.


Docosahexaenoic acid (DHA) Eicosapentaenoic acid (EPA) ADHD Autism Juvenile bipolar disorder Intellectual disability 



The authors gratefully acknowledge Prof. Luigi Panza and Marco Pozzi for their kind contribution in developing a better understanding of general chemistry concepts, and Stefania Conte for her contribution in a previous draft of this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: this work was supported by grant from the Italian Ministry of Health (Ricerca Corrente 2015).


  1. 1.
    Mattila ML, Kielinen M, Linna SL, Jussila K, Ebeling H, Bloigu R, Joseph RM, Moilanen I (2011) Autism spectrum disorders according to DSM-IV-TR and comparison with DSM-5 draft criteria: an epidemiological study. J Am Acad Child Adolesc Psychiatry 50(6):583–592. doi: 10.1016/j.jaac.2011.04.001 CrossRefPubMedGoogle Scholar
  2. 2.
    Baird G, Simonoff E, Pickles A, Chandler S, Loucas T, Meldrum D, Charman T (2006) Prevalence of disorders of the autism spectrum in a population cohort of children in South Thames: the Special Needs and Autism Project (SNAP). Lancet 368(9531):210–215. doi: 10.1016/s0140-6736(06)69041-7 CrossRefPubMedGoogle Scholar
  3. 3.
    Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA (2007) The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 164(6):942–948. doi: 10.1176/ajp.2007.164.6.942 CrossRefPubMedGoogle Scholar
  4. 4.
    Roeleveld N, Zielhuis GA, Gabreels F (1997) The prevalence of mental retardation: a critical review of recent literature. Dev Med Child Neurol 39(2):125–132. doi: 10.1111/j.1469-8749.1997.tb07395.x CrossRefPubMedGoogle Scholar
  5. 5.
    Stella G (1999) Dislessia Evolutiva-Developmental Dyslexia. Giornale Di Neuropsichiatria dell’Età Evolutiva 19:39–52Google Scholar
  6. 6.
    Ford T, Goodman R, Meltzer H (2003) The British Child and Adolescent Mental Health Survey 1999: the prevalence of DSM-IV disorders. J Am Acad Child Adolesc Psychiatry 42(10):1203–1211. doi: 10.1097/00004583-200310000-00011 CrossRefPubMedGoogle Scholar
  7. 7.
    Frigerio A, Rucci P, Goodman R, Ammaniti M, Carlet O, Cavolina P et al (2009) Prevalence and correlates of mental disorders among adolescents in Italy: the PrISMA study. Eur Child Adolesc Psychiatry 18(4):217–226. doi: 10.1007/s00787-008-0720-x CrossRefPubMedGoogle Scholar
  8. 8.
    Russell G, Rodgers LR, Ukoumunne OC, Ford T (2014) Prevalence of parent-reported ASD and ADHD in the UK: Findings from the Millennium Cohort Study. J Autism Dev Disord 44:31–40. doi: 10.1007/s10803-013-1849-0 CrossRefPubMedGoogle Scholar
  9. 9.
    DuPaul GJ, Gormley MJ, Laracy SD (2013) Comorbidity of LD and ADHD: implications of DSM-5 for assessment and treatment. J Learn Disabil 46(1):43–51. doi: 10.1177/0022219412464351 CrossRefPubMedGoogle Scholar
  10. 10.
    Richardson AJ (2001) Fatty acids in dyslexia, dyspraxia, adhd and the autistic spectrum. Nutr Pract 3(3):18–24Google Scholar
  11. 11.
    Dilsaver SC, Henderson-Fuller S, Akiskal HS (2003) Occult mood disorders in 104 consecutively presenting children referred for the treatment of attention-deficit/hyperactivity disorder in a community mental health clinic. J Clin Psychiatry 64(10):1170–1176. doi: 10.4088/jcp.v64n1005 CrossRefPubMedGoogle Scholar
  12. 12.
    Kowatch RA, Youngstrom EA, Danielyan A, Findling RL (2005) Review and meta-analysis of the phenomenology and clinical characteristics of mania in children and adolescents. Bipolar Disord 7(6):483–496. doi: 10.1111/j.1399-5618.2005.00261.x CrossRefPubMedGoogle Scholar
  13. 13.
    Leyfer OT, Folstein SE, Bacalman S, Davis NO, Dinh E, Morgan J et al (2006) Comorbid psychiatric disorders in children with autism: interview development and rates of disorders. J Autism Dev Disord 36(7):849–861. doi: 10.1007/s10803-006-0123-0 CrossRefPubMedGoogle Scholar
  14. 14.
    Mash EJ, Barkley RA (eds) (2014) Child psychopathology. Guilford Publications, New YorkGoogle Scholar
  15. 15.
    Simonoff E, Pickles A, Charman T, Chandler S, Loucas T, Baird G (2008) Psychiatric disorders in children with autism spectrum disorders: prevalence, comorbidity, and associated factors in a population-derived sample. J Am Acad Child Adolesc Psychiatry 47(8):921–929. doi: 10.1097/CHI.0b013e318179964f CrossRefPubMedGoogle Scholar
  16. 16.
    Richardson AJ (2006) Omega-3 fatty acids in ADHD and related neurodevelopmental disorders. Int Rev Psychiatr 18(2):155–172. doi: 10.1080/09540260600583031 CrossRefGoogle Scholar
  17. 17.
    Dyall SC (2015) Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. Front Aging Neurosci 7:52. doi: 10.3389/fnagi.2015.00052 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Schuchardt JP, Hahn A (2011) Influence of long-chain polyunsaturated fatty acids (LC-PUFAs) on cognitive and visual development. In: Benton D (ed) Lifetime nutritional influences on cognition, behaviour and psychiatric illness. Woodhead Publishing, Oxford, pp 32–78. doi: 10.1533/9780857092922.1.32 CrossRefGoogle Scholar
  19. 19.
    Fliesler SJ, Anderson RE (1983) Chemistry and metabolism of lipids in the verte- brate retina. Prog Lipid Res 22:79–131. doi: 10.1016/0163-7827(83)90004-8 CrossRefPubMedGoogle Scholar
  20. 20.
    Innis SM (2007) Dietary (n-3) fatty acids and brain development. J Nutr 137(4):855–859. doi: 10.1016/j.brainres.2008.08.078 PubMedGoogle Scholar
  21. 21.
    McNamara RK, Vannest JJ, Valentine CJ (2015) Role of perinatal long-chain omega-3 fatty acids in cortical circuit maturation: Mechanisms and implications for psychopathology. World J Psychiatr 5(1):15–34. doi: 10.5498/wjp.v5.i1.15 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Clayton P, Gill MS (2001) Normal growth and its endocrine control. In: Brook C, Hindmarsh PC (eds) Clinical paediatric endocrinology. Blackwell Publishing Ltd, Oxford, pp 95–114Google Scholar
  23. 23.
    Lauritzen L, Hansen HS, Jørgensen MH, Michaelsen KF (2001) The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog Lipid Res 40(1–2):1–94. doi: 10.1016/S0163-7827(00)00017-5 CrossRefPubMedGoogle Scholar
  24. 24.
    Bazinet RP, Layé S (2014) Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci 15(12):771–785. doi: 10.1038/nrn3820 CrossRefPubMedGoogle Scholar
  25. 25.
    Schuchardt JP, Huss M, Stauss-Grabo M, Hahn A (2010) Significance of long-chain polyunsaturated fatty acids (PUFAs) for the development and behaviour of children. Eur J Pediatr 169(2):149–164. doi: 10.1007/s00431-009-1035-8 CrossRefPubMedGoogle Scholar
  26. 26.
    Song C, Shieh CH, Wu YS, Kalueff A, Gaikwad S, Su KP (2016) The role of omega-3 polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids in the treatment of major depression and Alzheimer’s disease: acting separately or synergistically? Prog Lipid Res 62:41–54. doi: 10.1016/j.plipres.2015.12.003 CrossRefPubMedGoogle Scholar
  27. 27.
    Mozaffarian D, Wu JH (2012) (n-3) fatty acids and cardiovascular health: are effects of EPA and DHA shared or complementary? J Nutr 142(3):614S–625S. doi: 10.3945/jn.111.149633 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Pawlosky RJ, Hibbeln JR, Novotny JA, Salem N (2001) Physiological compartmental analysis of alpha-linolenic acid metabolism in adult humans. J Lipid Res 42(8):1257–1265PubMedGoogle Scholar
  29. 29.
    Salem N Jr, Pawlosky R, Wegher B, Hibbeln J (1999) In vivo conversion of linoleic acid to arachidonic acid in human adults. Prostaglandins Leukot Essent Fatty Acids 60(5–6):407–410. doi: 10.1016/s0952-3278(99)80021-0 CrossRefPubMedGoogle Scholar
  30. 30.
    Simopoulos AP (2011) Evolutionary aspects of diet: the omega-6/omega-3 ratio and the brain. Mol Neurobiol 44(2):203–215. doi: 10.1007/s12035-010-8162-0 CrossRefPubMedGoogle Scholar
  31. 31.
    Kuratko CN, Salem N (2009) Biomarkers of DHA status. Prostaglandins Leukot Essent Fatty Acids 81(2):111–118. doi: 10.1016/j.plefa.2009.05.007 CrossRefPubMedGoogle Scholar
  32. 32.
    Yao J, Stanley JA, Reddy RD, Keshavan MS, Pettegrew JW (2002) Correlations between peripheral polyunsaturated fatty acid content and in vivo membrane phospholipid metabolites. Biol Psychiatry 52(8):823–830. doi: 10.1016/s0006-3223(02)01397-5 CrossRefPubMedGoogle Scholar
  33. 33.
    Hawkey E, Nigg JT (2014) Omega-3 fatty acid and ADHD: blood level analysis and meta-analytic extension of supplementation trials. Clin Psychol Rev 34(6):496–505. doi: 10.1016/j.cpr.2014.05.005 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. Phys Ther 89(9):873–880. doi: 10.1136/bmj.b2535 Google Scholar
  35. 35.
    Higgins JPT, Green S (eds) (2011) Cochrane Handbook for systematic reviews of interventions version 5.1.0 (updated March 2011). The Cochrane Collaboration. doi: 10.1002/jrsm.38.
  36. 36.
    Lohner S, Fekete K, Marosvölgyi T, Decsi T (2013) Gender differences in the long-chain polyunsaturated fatty acid status: systematic review of 51 publications. Ann Nutr Metab 62(2):98–112. doi: 10.1159/000345599 CrossRefPubMedGoogle Scholar
  37. 37.
    Risé P, Eligini S, Ghezzi S, Colli S, Galli C (2007) Fatty acid composition of plasma, blood cells and whole blood: relevance for the assessment of the fatty acid status in humans. Prostaglandins Leukot Essent Fatty Acids 76(6):363–369. doi: 10.1016/j.plefa.2007.05.003 CrossRefPubMedGoogle Scholar
  38. 38.
    Harris WS, Von SC (2004) The omega-3 index: a new risk factor for death from coronary heart disease? Prev Med 39(1):212–220. doi: 10.1016/j.ypmed.2004.02.030 CrossRefPubMedGoogle Scholar
  39. 39.
    Wells GA, Shea B, O’connell D, Peterson JEA, Welch V, Losos M et al (2000) The Newcastle--Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses.
  40. 40.
    Germano M, Meleleo D, Montorfano G, Adorni L, Negroni M, Berra B et al (2007) Plasma, red blood cells phospholipids and clinical evaluation after long chain omega-3 supplementation in children with attention deficit hyperactivity disorder (ADHD). Nutr Neurosci 10(1–2):1–9. doi: 10.1080/10284150601153801 CrossRefPubMedGoogle Scholar
  41. 41.
    Joshi K, Lad S, Kale M, Patwardhan B, Mahadik SP, Patni B et al (2006) Supplementation with flax oil and vitamin C improves the outcome of Attention Deficit Hyperactivity Disorder (ADHD). Prostaglandins Leukot Essent Fatty Acids 74(1):17–21. doi: 10.1016/j.plefa.2005.10.001 CrossRefPubMedGoogle Scholar
  42. 42.
    Meguid NA, Atta HM, Gouda AS, Khalil RO (2008) Role of polyunsaturated fatty acids in the management of Egyptian children with autism. Clin Biochem 41(13):1044–1048. doi: 10.1016/j.clinbiochem.2008.05.013 CrossRefPubMedGoogle Scholar
  43. 43.
    Stevens LJ, Zhang W, Peck L, Kuczek T, Grevstad N, Mahon A et al (2003) EFA supplementation in children with inattention, hyperactivity, and other disruptive behaviors. Lipids 38(10):1007–1021. doi: 10.1007/s11745-006-1155-0 CrossRefPubMedGoogle Scholar
  44. 44.
    Wozniak J, Biederman J, Mick E, Waxmonsky J, Hantsoo L, Best C et al (2007) Omega-3 fatty acid monotherapy for pediatric bipolar disorder: a prospective open-label trial. Eur Neuropsychopharm 17(6):440–447. doi: 10.1016/j.euroneuro.2006.11.006 CrossRefGoogle Scholar
  45. 45.
    Montgomery P, Burton JR, Sewell RP, Spreckelsen TF, Richardson AJ (2013) Low blood long chain omega-3 fatty acids in UK children are associated with poor cognitive performance and behavior: a cross-sectional analysis from the DOLAB study. PLoS One 8(6):e66697. doi: 10.1371/journal.pone.0066697 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Colter AL, Cutler C, Meckling K (2008) Fatty acid status and behavioural symptoms of attention deficit hyperactivity disorder in adolescents: a case-control study. Nutr J 7(1):1. doi: 10.1186/1475-2891-7-8 CrossRefGoogle Scholar
  47. 47.
    Pottala JV, Talley JA, Churchill SW, Lynch DA, von Schacky C, Harris WS (2012) Red blood cell fatty acids are associated with depression in a case-control study of adolescents. Prostaglandins Leukot Essent Fatty Acids 86(4):161–165. doi: 10.1016/j.plefa.2012.03.002 CrossRefPubMedGoogle Scholar
  48. 48.
    Al-Farsi YM, Waly MI, Deth RC, Al-Sharbati MM, Al-Shafaee M, Al-Farsi O et al (2013) Impact of nutrition on serum levels of docosahexaenoic acid among Omani children with autism. Nutrition 29(9):1142–1146. doi: 10.1016/j.nut.2013.03.009 CrossRefPubMedGoogle Scholar
  49. 49.
    Bu B, Ashwood P, Harvey D, King IB, Van de Water J, Jin LW (2006) Fatty acid compositions of red blood cell phospholipids in children with autism. Prostaglandins Leukot Essent Fatty Acids 74(4):215–221. doi: 10.1016/j.plefa.2006.02.001 CrossRefPubMedGoogle Scholar
  50. 50.
    Clayton EH, Hanstock TL, Hirneth SJ, Kable CJ, Garg ML, Hazell PL (2008) Long-chain omega-3 polyunsaturated fatty acids in the blood of children and adolescents with juvenile bipolar disorder. Lipids 43(11):1031–1038. doi: 10.1007/s11745-008-3224-z CrossRefPubMedGoogle Scholar
  51. 51.
    Crippa A, Agostoni C, Mauri M, Molteni M, Nobile M (2016) Polyunsaturated fatty acids are associated with behavior but not with cognition in children with and without ADHD: an Italian study. J Atten Disord. doi: 10.1177/1087054716629215 PubMedGoogle Scholar
  52. 52.
    Gracious BL, Chirieac MC, Costescu S, Finucane TL, Youngstrom EA, Hibbeln JR (2010) Randomized, placebo-controlled trial of flax oil in pediatric bipolar disorder. Bipolar Disord 12(2):142–154. doi: 10.1111/j.1399-5618.2010.00799.x CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Gustafsson PA, Birberg-Thornberg U, Duchén K, Landgren M, Malmberg K, Pelling H et al (2010) EPA supplementation improves teacher-rated behaviour and oppositional symptoms in children with ADHD. Acta Paediatr 99(10):1540–1549. doi: 10.1111/j.1651-2227.2010.01871.x CrossRefPubMedGoogle Scholar
  54. 54.
    Johnson M, Månsson JE, Östlund S, Fransson G, Areskoug B, Hjalmarsson K et al (2012) Fatty acids in ADHD: plasma profiles in a placebo-controlled study of Omega 3/6 fatty acids in children and adolescents. Atten Defic Hyperact Disord 4(4):199–204. doi: 10.1007/s12402-012-0084-4 CrossRefPubMedGoogle Scholar
  55. 55.
    Milte CM, Sinn N, Buckley JD, Coates AM, Young RM, Howe PR (2011) Polyunsaturated fatty acids, cognition and literacy in children with ADHD with and without learning difficulties. J Child Health Care 15(4):299–311. doi: 10.1177/1367493511403953 CrossRefPubMedGoogle Scholar
  56. 56.
    Milte CM, Parletta N, Buckley JD, Coates AM, Young RM, Howe PR (2012) Eicosapentaenoic and docosahexaenoic acids, cognition, and behavior in children with attention-deficit/hyperactivity disorder: a randomized controlled trial. Nutrition 28(6):670–677. doi: 10.1016/j.nut.2011.12.009 CrossRefPubMedGoogle Scholar
  57. 57.
    Neggers YH, Kim EK, Song JM, Chung EJ, Um YS, Park T (2009) Mental retardation is associated with plasma omega-3 fatty acid levels and the omega-3/omega-6 ratio in children. Asia Pac J Clin Nutr 18(1):22–28. doi: 10.6133/apjcn.2009.18.1.04 PubMedGoogle Scholar
  58. 58.
    Sorgi PJ, Hallowell EM, Hutchins HL, Sears B (2007) Effects of an open-label pilot study with high-dose EPA/DHA concentrates on plasma phospholipids and behavior in children with attention deficit hyperactivity disorder. Nutr J 6(1):1. doi: 10.1186/1475-2891-6-16 CrossRefGoogle Scholar
  59. 59.
    Spahis S, Vanasse M, Bélanger SA, Ghadirian P, Grenier E, Levy E (2008) Lipid profile, fatty acid composition and pro-and anti-oxidant status in pediatric patients with attention-deficit/hyperactivity disorder. Prostaglandins Leukot Essent Fatty Acids 79(1):47–53. doi: 10.1016/j.plefa.2008.07.005 CrossRefPubMedGoogle Scholar
  60. 60.
    Stevens LJ, Zentall SS, Deck JL, Abate ML, Watkins BA, Lipp SR et al (1995) Essential fatty acid metabolism in boys with attention-deficit hyperactivity disorder. Am J Clin Nutr 62(4):761–768PubMedGoogle Scholar
  61. 61.
    Vaisman N, Kaysar N, Zaruk-Adasha Y, Pelled D, Brichon G, Zwingelstein G et al (2008) Correlation between changes in blood fatty acid composition and visual sustained attention performance in children with inattention: effect of dietary n-3 fatty acids containing phospholipids. Am J Clin Nutr 87(5):1170–1180PubMedGoogle Scholar
  62. 62.
    Widenhorn-Müller K, Schwanda S, Scholz E, Spitzer M, Bode H (2014) Effect of supplementation with long-chain ω-3 polyunsaturated fatty acids on behavior and cognition in children with attention deficit/hyperactivity disorder (ADHD): a randomized placebo-controlled intervention trial. Prostaglandins Leukot Essent Fatty Acids (PLEFA) 91(1):49–60. doi: 10.1016/j.plefa.2014.04.004 CrossRefGoogle Scholar
  63. 63.
    Gow RV, Matsudaira T, Taylor E, Rubia K, Crawford M, Ghebremeskel K et al (2009) Total red blood cell concentrations of ω-3 fatty acids are associated with emotion-elicited neural activity in adolescent boys with attention-deficit hyperactivity disorder. Prostaglandins Leukot Essent Fatty Acids 80(2):151–156. doi: 10.1016/j.plefa.2008.12.007 CrossRefPubMedGoogle Scholar
  64. 64.
    Gow RV, Vallee-Tourangeau F, Crawford MA, Taylor E, Ghebremeskel K, Bueno AA et al (2013) Omega-3 fatty acids are inversely related to callous and unemotional traits in adolescent boys with attention deficit hyperactivity disorder. Prostaglandins Leukot Essent Fatty Acids (PLEFA) 88(6):411–418. doi: 10.1016/j.plefa.2013.03.009 CrossRefGoogle Scholar
  65. 65.
    Sliwinski S, Croonenberghs J, Christophe A, Deboutte D, Maes M (2006) Polyunsaturated fatty acids: do they have a role in the pathophysiology of autism? Neuro Endocrinol Lett 27(4):465–471PubMedGoogle Scholar
  66. 66.
    Sumich A, Matsudaira T, Gow RV, Ibrahimovic A, Ghebremeskel K, Crawford M et al (2009) Resting state electroencephalographic correlates with red cell long-chain fatty acids, memory performance and age in adolescent boys with attention deficit hyperactivity disorder. Neuropharmacology 57(7):708–714. doi: 10.1016/j.neuropharm.2009.07.024 CrossRefPubMedGoogle Scholar
  67. 67.
    Brigandi SA, Shao H, Qian SY, Shen Y, Wu BL, Kang JX (2015) Autistic children exhibit decreased levels of essential fatty acids in red blood cells. Int J Mol Sci 16(5):10061–10076. doi: 10.3390/ijms160510061 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Chen JR, Hsu SF, Hsu CD, Hwang LH, Yang SC (2004) Dietary patterns and blood fatty acid composition in children with attention-deficit hyperactivity disorder in Taiwan. J Nutr Biochem 15(8):467–472. doi: 10.1016/j.jnutbio.2004.01.008 CrossRefPubMedGoogle Scholar
  69. 69.
    El-Ansary AK, Bacha AGB, Al-Ayahdi LY (2011) Plasma fatty acids as diagnostic markers in autistic patients from Saudi Arabia. Lipids Health Dis 10(1):62. doi: 10.1186/1476-511X-10-62 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Ghezzo A, Visconti P, Abruzzo PM, Bolotta A, Ferreri C, Gobbi G et al (2013) Oxidative stress and erythrocyte membrane alterations in children with autism: correlation with clinical features. PLoS One 8(6):e66418. doi: 10.1371/journal.pone.0066418 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Mostafa GA, El-Gamal HA, El-Wakkad AS, El-Shorbagy OE, Hamza MM (2005) Polyunsaturated fatty acids, carnitine and lactate as biological markers of brain energy in autistic children. Int J Child Neuropsychiatry 2(2):179–188Google Scholar
  72. 72.
    Mostafa GA, Al-Ayadhi LY (2015) Reduced levels of plasma polyunsaturated fatty acids and serum carnitine in autistic children: relation to gastrointestinal manifestations. Behav Brain Funct 11(4):1. doi: 10.1186/s12993-014-0048-2 Google Scholar
  73. 73.
    Mostafa GA, El-Khashab HY, AL-Ayadhi LY (2015) A possible association between elevated serum levels of brain-specific auto-antibodies and reduced plasma levels of docosahexaenoic acid in autistic children. J Neuroimmunol 280:16–20. doi: 10.1016/j.jneuroim.2015.01.009 CrossRefPubMedGoogle Scholar
  74. 74.
    Vancassel S, Durand G, Barthelemy C, Lejeune B, Martineau J, Guilloteau D et al (2001) Plasma fatty acid levels in autistic children. Prostaglandins Leukot Essent Fatty Acids 65(1):1–7. doi: 10.1054/plef.2001.0281 CrossRefPubMedGoogle Scholar
  75. 75.
    Voigt RG, Mellon MW, Katusic SK, Weaver AL, Matern D, Mellon B et al (2014) Dietary docosahexaenoic acid supplementation in children with autism. J Pediatr Gastroenterol Nutr 58(6):715–722. doi: 10.1097/mpg.0000000000000260 PubMedGoogle Scholar
  76. 76.
    Bell JG, Miller D, MacDonald DJ, MacKinlay EE, Dick JR, Cheseldine S et al (2010) The fatty acid compositions of erythrocyte and plasma polar lipids in children with autism, developmental delay or typically developing controls and the effect of fish oil intake. Br J Nutr 103(08):1160–1167. doi: 10.1017/s0007114509992881 PubMedGoogle Scholar
  77. 77.
    Mitchell EA, Ama MG, Turbott SH, Manku M (1987) Clinical characteristics and serum essential fatty acid levels in hyperactive children. Clin Pediatr 26(8):406–411. doi: 10.1177/000992288702600805 CrossRefGoogle Scholar
  78. 78.
    Swenne I, Rosling A, Tengblad S, Vessby B (2011) Essential fatty acid status in teenage girls with eating disorders and weight loss. Acta Paediatr 100(5):762–767. doi: 10.1111/j.1651-2227.2011.02153.x CrossRefPubMedGoogle Scholar
  79. 79.
    Swenne I, Rosling A (2012) Omega-3 essential fatty acid status is improved during nutritional rehabilitation of adolescent girls with eating disorders and weight loss. Acta Paediatr 101(8):858–861. doi: 10.1111/j.1651-2227.2012.02684.x CrossRefPubMedGoogle Scholar
  80. 80.
    Voigt RG, Llorente AM, Jensen CL, Fraley JK, Berretta MC, Heird WC (2001) A randomized, double-blind, placebo-controlled trial of docosahexaenoic acid supplementation in children with attention-deficit/hyperactivity disorder. J Pediatr 139(2):189–196. doi: 10.1067/mpd.2001.116050 CrossRefPubMedGoogle Scholar
  81. 81.
    Clayton EH, Hanstock TL, Hirneth SJ, Kable CJ, Garg ML, Hazell PL (2009) Reduced mania and depression in juvenile bipolar disorder associated with long-chain ω-3 polyunsaturated fatty acid supplementation. Eur J Clin Nutr 63(8):1037–1040. doi: 10.1038/ejcn.2008.81 CrossRefPubMedGoogle Scholar
  82. 82.
    Sublette ME, Ellis SP, Geant AL, Mann JJ (2011) Meta-analysis of the effects of eicosapentaenoic acid (EPA) in clinical trials in depression. J Clin Psychiatry 72:1577–1584. doi: 10.4088/jcp.10m06634 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Richardson AJ (2004) Long-chain polyunsaturated fatty acids in childhood developmental and psychiatric disorders. Lipids 39(12):1215–1222. doi: 10.1007/s11745-004-1350-z CrossRefPubMedGoogle Scholar
  84. 84.
    Farook MF, DeCuypere M, Hyland K, Takumi T, LeDoux MS, Reiter LT (2012) Altered serotonin, dopamine and norepinepherine levels in 15q duplication and Angelman syndrome mouse models. PLoS One 7(8):e43030. doi: 10.1371/journal.pone.0043030 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Janssen CI, Kiliaan AJ (2014) Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration. Prog Lipid Res 53:1–17. doi: 10.1016/j.plipres.2013.10.002 CrossRefPubMedGoogle Scholar
  86. 86.
    McNamara RK (2016) Role of Omega-3 fatty acids in the etiology, treatment, and prevention of depression: current status and future directions. J Nutr Intermed Metab 5:96–106. doi: 10.1016/j.jnim.2016.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Simopoulos AP (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med 233(6):674–688. doi: 10.3181/0711-mr-311 CrossRefGoogle Scholar
  88. 88.
    Caspi A, Williams B, Kim-Cohen J, Craig IW, Milne BJ, Poulton R et al (2007) Moderation of breastfeeding effects on the IQ by genetic variation in fatty acid metabolism. Proc Natl Acad Sci USA 104(47):18860–18865. doi: 10.1073/pnas.0704292104 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    O’Neill CM, Minihane AM (2016) The impact of fatty acid desaturase genotype on fatty acid status and cardiovascular health in adults. Proc Nutr Soc 16:1–12. doi: 10.1017/s0029665116000732 Google Scholar
  90. 90.
    Brookes KJ, Chen W, Xu X, Taylor E, Asherson P (2006) Association of fatty acid desaturase genes with attention-deficit/hyperactivity disorder. Biol Psychiatry 60(10):1053–1061. doi: 10.1016/j.biopsych.2006.04.025 CrossRefPubMedGoogle Scholar
  91. 91.
    Bouchard-Mercier A, Rudkowska I, Lemieux S, Couture P, Vohl MC (2014) Polymorphisms in genes involved in fatty acid β-oxidation interact with dietary fat intakes to modulate the plasma TG response to a fish oil supplementation. Nutrients 6(3):1145–1163. doi: 10.3390/nu6031145 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Cooper RE, Tye C, Kuntsi J, Vassos E, Asherson P (2015) Omega-3 polyunsaturated fatty acid supplementation and cognition: a systematic review and meta-analysis. J Psychopharmacol 29(7):753–763. doi: 10.1177/0269881115587958 CrossRefPubMedGoogle Scholar
  93. 93.
    Richardson AJ, Ross MA (2000) Fatty acid metabolism in neurodevelopmental disorder: a new perspective on associations between attention-deficit/hyperactivity disorder, dyslexia, dyspraxia and the autistic spectrum. Prostaglandins Leukot Essent Fatty Acids 63(1):1–9. doi: 10.1054/plef.2000.0184 CrossRefPubMedGoogle Scholar
  94. 94.
    Bloch MH, Qawasmi A (2011) Omega-3 fatty acid supplementation for the treatment of children with attention-deficit/hyperactivity disorder symptomatology: systematic review and meta-analysis. J Am Acad Child Adolesc Psychiatry 50(10):991–1000. doi: 10.1016/j.jaac.2011.06.008 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Nemets H, Nemets B, Apter A, Bracha Z, Belmaker RH (2006) Omega-3 treatment of childhood depression: a controlled, double-blind pilot study. Am J Psychiatry 163(6):1098–1100. doi: 10.1176/ajp.2006.163.6.1098 CrossRefPubMedGoogle Scholar
  96. 96.
    Fekete K, Marosvölgyi T, Jakobik V, Decsi T (2009) Methods of assessment of n–3 long-chain polyunsaturated fatty acid status in humans: a systematic review. Am J Clin Nutr 89:2070S–2084S. doi: 10.3945/ajcn.2009.27230I CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Alessandra Tesei
    • 1
  • Alessandro Crippa
    • 1
    • 2
    Email author
  • Silvia Busti Ceccarelli
    • 1
  • Maddalena Mauri
    • 1
  • Massimo Molteni
    • 1
  • Carlo Agostoni
    • 3
  • Maria Nobile
    • 1
    • 4
  1. 1.Child Psychopathology Unit, Scientific InstituteIRCCS Eugenio MedeaLeccoItaly
  2. 2.Department of PsychologyUniversity of MilanoMilanItaly
  3. 3.Department of PaediatricsFondazione IRCCS Cà Granda, Ospedale Maggiore PoliclinicoMilanItaly
  4. 4.Villa San Benedetto Hospital, Hermanas HospitalariasFoRiPsiAlbese con CassanoItaly

Personalised recommendations