European Child & Adolescent Psychiatry

, Volume 24, Issue 10, pp 1279–1289

Classifying adolescent attention-deficit/hyperactivity disorder (ADHD) based on functional and structural imaging

  • Reto Iannaccone
  • Tobias U. Hauser
  • Juliane Ball
  • Daniel Brandeis
  • Susanne Walitza
  • Silvia Brem
Original Contribution

Abstract

Attention-deficit/hyperactivity disorder (ADHD) is a common disabling psychiatric disorder associated with consistent deficits in error processing, inhibition and regionally decreased grey matter volumes. The diagnosis is based on clinical presentation, interviews and questionnaires, which are to some degree subjective and would benefit from verification through biomarkers. Here, pattern recognition of multiple discriminative functional and structural brain patterns was applied to classify adolescents with ADHD and controls. Functional activation features in a Flanker/NoGo task probing error processing and inhibition along with structural magnetic resonance imaging data served to predict group membership using support vector machines (SVMs). The SVM pattern recognition algorithm correctly classified 77.78 % of the subjects with a sensitivity and specificity of 77.78 % based on error processing. Predictive regions for controls were mainly detected in core areas for error processing and attention such as the medial and dorsolateral frontal areas reflecting deficient processing in ADHD (Hart et al., in Hum Brain Mapp 35:3083–3094, 2014), and overlapped with decreased activations in patients in conventional group comparisons. Regions more predictive for ADHD patients were identified in the posterior cingulate, temporal and occipital cortex. Interestingly despite pronounced univariate group differences in inhibition-related activation and grey matter volumes the corresponding classifiers failed or only yielded a poor discrimination. The present study corroborates the potential of task-related brain activation for classification shown in previous studies. It remains to be clarified whether error processing, which performed best here, also contributes to the discrimination of useful dimensions and subtypes, different psychiatric disorders, and prediction of treatment success across studies and sites.

Keywords

ADHD fMRI Classification Attention Adolescence 

Supplementary material

787_2015_678_MOESM1_ESM.pdf (3 mb)
Supplementary material 1 (PDF 3,120 kb)

References

  1. 1.
    Albrecht B, Brandeis D, Uebel H, Heinrich H, Mueller UC, Hasselhorn M, Steinhausen HC, Rothenberger A, Banaschewski T (2008) Action monitoring in boys with attention-deficit/hyperactivity disorder, their nonaffected siblings, and normal control subjects: evidence for an endophenotype. Biol Psychiatry 64:615–625PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Amico F, Stauber J, Koutsouleris N, Frodl T (2011) Anterior cingulate cortex gray matter abnormalities in adults with attention deficit hyperactivity disorder: a voxel-based morphometry study. Psychiatry Res Neuroimag 191:31–35CrossRefGoogle Scholar
  3. 3.
    APA (2000) DSM IV: Diagnositic and statistical manual of mental disorders. American Psychiatric Press, Washington DCGoogle Scholar
  4. 4.
    Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38:95–113CrossRefPubMedGoogle Scholar
  5. 5.
    Ashburner J, Friston KJ (2000) Voxel-Based Morphometry—the Methods. Neuroimage 11:805–821CrossRefPubMedGoogle Scholar
  6. 6.
    Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. Proceedings of the fifth annual workshop on Computational learning theory. ACM, Pittsburgh, pp 144–152CrossRefGoogle Scholar
  7. 7.
    Bush G (2010) Attention-deficit/hyperactivity disorder and attention networks. Neuropsychopharmacology 35:278–300PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Bush G, Spencer TJ, Holmes J et al (2008) Functional magnetic resonance imaging of methylphenidate and placebo in attention-deficit/hyperactivity disorder during the multi-source interference task. Arch Gen Psychiatry 65:102–114CrossRefPubMedGoogle Scholar
  9. 9.
    Carmona S, Vilarroya O, Bielsa A, Tremols V, Soliva JC, Rovira M, Tomas J, Raheb C, Gispert JD, Batlle S, Bulbena A (2005) Global and regional gray matter reductions in ADHD: a voxel-based morphometric study. Neurosci Lett 389:88–93CrossRefPubMedGoogle Scholar
  10. 10.
    Castellanos FX, Di Martino A, Craddock RC, Mehta AD, Milham MP (2013) Clinical applications of the functional connectome. NeuroImage 80:527–540CrossRefPubMedGoogle Scholar
  11. 11.
    Castellanos FX, Lee PP, Sharp W, Jeffries NO, Greenstein DK, Clasen LS, Blumenthal JD, James RS, Ebens CL, Walter JM, Zijdenbos A, Evans AC, Giedd JN, Rapoport JL (2002) Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA 288:1740–1748CrossRefPubMedGoogle Scholar
  12. 12.
    Conners CK, Sitarenios G, Parker JA, Epstein J (1998) The revised conners’ parent rating scale (CPRS-R): factor structure, reliability, and criterion validity. J Abnorm Child Psychol 26:257–268CrossRefPubMedGoogle Scholar
  13. 13.
    Cubillo A, Halari R, Smith A, Taylor E, Rubia K (2012) A review of fronto-striatal and fronto-cortical brain abnormalities in children and adults with Attention Deficit Hyperactivity Disorder (ADHD) and new evidence for dysfunction in adults with ADHD during motivation and attention. Cortex 48:194–215CrossRefPubMedGoogle Scholar
  14. 14.
    Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engel AK (2005) Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J Neurosci 25:11730–11737CrossRefPubMedGoogle Scholar
  15. 15.
    Durston S, de Zeeuw P, Staal WG (2009) Imaging genetics in ADHD: a focus on cognitive control. Neurosci Biobehav Rev 33:674–689CrossRefPubMedGoogle Scholar
  16. 16.
    Ecker C, Marquand A, Mourão-Miranda J, Johnston P, Daly EM, Brammer MJ, Maltezos S, Murphy CM, Robertson D, Williams SC, Murphy DGM (2010) Describing the brain in autism in five dimensions—magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach. J Neurosci 30:10612–10623CrossRefPubMedGoogle Scholar
  17. 17.
    Eloyan A, Muschelli J, Nebel MB, Liu H, Han F, Zhao T, Barber AD, Joel S, Pekar JJ, Mostofsky SH, Caffo B (2012) Automated diagnoses of attention deficit hyperactive disorder using magnetic resonance imaging. Front Syst Neurosci 6:61PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Eppinger B, Mock B, Kray J (2009) Developmental differences in learning and error processing: evidence from ERPs. Psychophysiology 46:1043–1053CrossRefPubMedGoogle Scholar
  19. 19.
    Eriksen BA, Eriksen CW (1974) Effect of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys 16:143–149CrossRefGoogle Scholar
  20. 20.
    Faraggi D, Reiser B (2002) Estimation of the area under the ROC curve. Stat Med 21:3093–3106CrossRefPubMedGoogle Scholar
  21. 21.
    Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ (1994) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210CrossRefGoogle Scholar
  22. 22.
    Frodl T, Skokauskas N (2012) Meta-analysis of structural MRI studies in children and adults with attention deficit hyperactivity disorder indicates treatment effects. Acta Psychiatr Scand 125:114–126CrossRefPubMedGoogle Scholar
  23. 23.
    Garavan H, Ross TJ, Kaufman J, Stein EA (2003) A midline dissociation between error-processing and response-conflict monitoring. Neuroimage 20:1132–1139CrossRefPubMedGoogle Scholar
  24. 24.
    Geburek AJ, Rist F, Gediga G, Stroux D, Pedersen A (2013) Electrophysiological indices of error monitoring in juvenile and adult attention deficit hyperactivity disorder (ADHD)—a meta-analytic appraisal. Int J Psychophysiol 87:349–362CrossRefPubMedGoogle Scholar
  25. 25.
    Giuliani NR, Calhoun VD, Pearlson GD, Francis A, Buchanan RW (2005) Voxel-based morphometry versus region of interest: a comparison of two methods for analyzing gray matter differences in schizophrenia. Schizophr Res 74:135–147CrossRefPubMedGoogle Scholar
  26. 26.
    Golland P, Fischl B (2003) Permutation tests for classification: towards statistical significance in image-based studies. In: Taylor C, Noble JA (eds) Information Processing in Medical Imaging. Springer, Berlin Heidelberg, pp 330–341CrossRefGoogle Scholar
  27. 27.
    Hart H, Chantiluke K, Cubillo AI, Smith AB, Simmons A, Brammer MJ, Marquand AF, Rubia K (2014) Pattern classification of response inhibition in ADHD: toward the development of neurobiological markers for ADHD. Hum Brain Mapp 35:3083–3094PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Hart H, Marquand AF, Smith A, Cubillo A, Simmons A, Brammer M, Rubia K (2014) Predictive neurofunctional markers of attention-deficit/hyperactivity disorder based on pattern classification of temporal processing. J Am Acad Child Adolesc Psychiatry 53(569–578):e561Google Scholar
  29. 29.
    Hastie T, Tibshirani R, Friedman JH (2003) The elements of statistical learning. Springer, New YorkGoogle Scholar
  30. 30.
    Hauser TU, Iannaccone R, Ball J, Mathys C, Brandeis D, Walitza S, Brem S (2014) Role of the medial prefrontal cortex in impaired decision making in juvenile attention-deficit/hyperactivity disorder. JAMA Psychiatry 71:1165–1173CrossRefPubMedGoogle Scholar
  31. 31.
    Hauser TU, Iannaccone R, Stampfli P, Drechsler R, Brandeis D, Walitza S, Brem S (2014) The feedback-related negativity (FRN) revisited: new insights into the localization, meaning and network organization. Neuroimage 84:159–168CrossRefPubMedGoogle Scholar
  32. 32.
    Heinrich H, Hoegl T, Moll GH, Kratz O (2014) A bimodal neurophysiological study of motor control in attention-deficit hyperactivity disorder: a step towards core mechanisms? Brain J Neurol 137:1156–1166CrossRefGoogle Scholar
  33. 33.
    Iannaccone R, Hauser TU, Staempfli P, Walitza S, Brandeis D, Brem S (2015) Conflict monitoring and error processing: new insights from simultaneous EEG–fMRI. Neuroimage 105:395–407CrossRefPubMedGoogle Scholar
  34. 34.
    Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P, Williamson D, Ryan N (1997) Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry 36:980–988CrossRefPubMedGoogle Scholar
  35. 35.
    Kloppel S, Abdulkadir A, Jack CR Jr, Koutsouleris N, Mourao-Miranda J, Vemuri P (2012) Diagnostic neuroimaging across diseases. NeuroImage 61:457–463PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Li F, Huang X, Tang W, Yang Y, Li B, Kemp GJ, Mechelli A, Gong Q (2014) Multivariate pattern analysis of DTI reveals differential white matter in individuals with obsessive-compulsive disorder. Hum Brain Mapp 35:2643–2651PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Lim L, Marquand A, Cubillo AA, Smith AB, Chantiluke K, Simmons A, Mehta M, Rubia K (2013) Disorder-specific predictive classification of adolescents with attention deficit hyperactivity disorder (ADHD) relative to autism using structural magnetic resonance imaging. PLoS ONE 8:e63660PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Liotti M, Pliszka SR, Perez R, Kothmann D, Woldorff MG (2005) Abnormal brain activity related to performance monitoring and error detection in children with ADHD. Cortex 41:377–388CrossRefPubMedGoogle Scholar
  39. 39.
    Marquand A, Howard M, Brammer M, Chu C, Coen S, Mourao-Miranda J (2010) Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes. Neuro Image 49:2178–2189PubMedGoogle Scholar
  40. 40.
    Marquand A, Rondina J, Mourao-Miranda J, Rocha-Rego V, Giampietro V Manual: Pattern Recognition of Brain Image Data—PROBID. Version 1.03Google Scholar
  41. 41.
    Mayes SD, Calhoun SL, Mayes RD, Molitoris S (2012) Autism and ADHD: overlapping and discriminating symptoms. Res Autism Spectr Disord 6:277–285CrossRefGoogle Scholar
  42. 42.
    Misaki M, Luh W-M, Bandettini PA (2013) The effect of spatial smoothing on fMRI decoding of columnar-level organization with linear support vector machine. J Neurosci Methods 212:355–361PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Modinos G, Mechelli A, Pettersson-Yeo W, Allen P, McGuire P, Aleman A (2013) Pattern classification of brain activation during emotional processing in subclinical depression: psychosis proneness as potential confounding factor. Peer J 1:e42PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Modinos G, Pettersson-Yeo W, Allen P, McGuire PK, Aleman A, Mechelli A (2012) Multivariate pattern classification reveals differential brain activation during emotional processing in individuals with psychosis proneness. Neuroimage 59:3033–3041CrossRefPubMedGoogle Scholar
  45. 45.
    Mørch N, Hansen L, Strother S, Svarer C, Rottenberg D, Lautrup B, Savoy R, Paulson O (1997) Nonlinear versus linear models in functional neuroimaging: learning curves and generalization crossover. In: Duncan J, Gindi G (eds) Information Processing in Medical Imaging. Springer, Berlin Heidelberg, pp 259–270CrossRefGoogle Scholar
  46. 46.
    Mourao-Miranda J, Bokde AL, Born C, Hampel H, Stetter M (2005) Classifying brain states and determining the discriminating activation patterns: support Vector Machine on functional MRI data. Neuro Image 28:980–995PubMedGoogle Scholar
  47. 47.
    Mourao-Miranda J, Ecker C, Sato JR, Brammer M (2008) Dynamic changes in the mental rotation network revealed by pattern recognition analysis of fMRI data. J Cognit Neurosci 21:890–904CrossRefGoogle Scholar
  48. 48.
    Mourao-Miranda J, Reinders AATS, Rocha-Rego V, Lappin J, Rondina J, Morgan C, Morgan KD, Fearon P, Jones PB, Doody GA, Murray RM, Kapur S, Dazzan P (2012) Individualized prediction of illness course at the first psychotic episode: a support vector machine MRI study. Psychol Med 42:1037–1047PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Nakao T, Nakao J, Radua K, Rubia D, Mataix C (2011) Gray matter volume abnormalities in ADHD: voxel-based meta-analysis exploring the effects of age and stimulant medication. Am J Psychiatry 168:1154CrossRefPubMedGoogle Scholar
  50. 50.
    Oliveira L, Ladouceur CD, Phillips ML, Brammer M, Mourao-Miranda J (2013) What does brain response to neutral faces tell us about major depression? evidence from machine learning and fMRI. PLoS ONE 8:e60121PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Op de Beeck HP (2010) Against hyperacuity in brain reading: spatial smoothing does not hurt multivariate fMRI analyses? Neuroimage 49:1943–1948CrossRefPubMedGoogle Scholar
  52. 52.
    Orru G, Pettersson-Yeo W, Marquand AF, Sartori G, Mechelli A (2012) Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci Biobehav Rev 36:1140–1152CrossRefPubMedGoogle Scholar
  53. 53.
    Peng X, Lin P, Zhang T, Wang J (2013) Extreme learning machine-based classification of ADHD using brain structural MRI data. PLoS ONE 8:e79476PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Pliszka SR, Glahn DC, Semrud-Clikeman M, Franklin C, Perez R 3rd, Xiong J, Liotti M (2006) Neuroimaging of inhibitory control areas in children with attention deficit hyperactivity disorder who were treatment naive or in long-term treatment. Am J Psychiatry 163:1052–1060CrossRefPubMedGoogle Scholar
  55. 55.
    Pliszka SR, Lancaster J, Liotti M, Semrud-Clikeman M (2006) Volumetric MRI differences in treatment-naïve vs chronically treated children with ADHD. Neurology 67:1023–1027CrossRefPubMedGoogle Scholar
  56. 56.
    Pliszka SR, Liotti M, Bailey BY, Perez R 3rd, Glahn D, Semrud-Clikeman M (2007) Electrophysiological effects of stimulant treatment on inhibitory control in children with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 17:356–366CrossRefPubMedGoogle Scholar
  57. 57.
    Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA (2007) The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 164:942–948CrossRefPubMedGoogle Scholar
  58. 58.
    Rubia K (2007) Neuro-anatomic evidence for the maturational delay hypothesis of ADHD. Proc Natl Acad Sci 104:19663–19664PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Rubia K, Cubillo A, Smith AB, Woolley J, Heyman I, Brammer MJ (2010) Disorder-specific dysfunction in right inferior prefrontal cortex during two inhibition tasks in boys with attention-deficit hyperactivity disorder compared to boys with obsessive–compulsive disorder. Hum Brain Mapp 31:287–299CrossRefPubMedGoogle Scholar
  60. 60.
    Rubia K, Halari R, Cubillo A, Mohammad AM, Brammer M, Taylor E (2009) Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naive children with ADHD during a rewarded continuous performance task. Neuropharmacology 57:640–652CrossRefPubMedGoogle Scholar
  61. 61.
    Rubia K, Smith AB, Brammer MJ, Toone B, Taylor E (2005) Abnormal brain activation during inhibition and error detection in medication-naive adolescents with ADHD. Am J Psychiatry 162:1067–1075CrossRefPubMedGoogle Scholar
  62. 62.
    Semrud Clikeman M, Pliszka S, Bledsoe J, Lancaster J (2012) Volumetric MRI Differences in Treatment Naive and Chronically Treated Adolescents With ADHD-Combined Type. J Atten Disord 18:511–520CrossRefPubMedGoogle Scholar
  63. 63.
    Semrud-Clikeman M, Pliszka SR, Lancaster J, Liotti M (2006) Volumetric MRI differences in treatment-naive vs chronically treated children with ADHD. Neurology 67:1023–1027CrossRefPubMedGoogle Scholar
  64. 64.
    Shaw P, Eckstrand K, Sharp W, Blumenthal J, Lerch JP, Greenstein D, Clasen L, Evans A, Giedd J, Rapoport JL (2007) Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc Natl Acad Sci 104:19649–19654PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Slotnick SD, Moo LR, Segal JB, Hart J Jr (2003) Distinct prefrontal cortex activity associated with item memory and source memory for visual shapes. Brain Res Cogn Brain Res 17:75–82CrossRefPubMedGoogle Scholar
  66. 66.
    Sordo M, Zeng Q (2005) On sample size and classification accuracy: a performance comparison. In: Oliveira J, Maojo V, Martín-Sánchez F, Pereira A (eds) Biological and medical data analysis. Springer, Berlin Heidelberg, pp 193–201CrossRefGoogle Scholar
  67. 67.
    Swisher JD, Gatenby JC, Gore JC, Wolfe BA, Moon C-H, Kim S-G, Tong F (2010) Multiscale pattern analysis of orientation-selective activity in the primary visual cortex. J Neurosci 30:325–330PubMedCentralCrossRefPubMedGoogle Scholar
  68. 68.
    Ullsperger M, von Cramon DY (2001) Subprocesses of performance monitoring: a dissociation of error processing and response competition revealed by event-related fMRI and ERPs. Neuroimage 14:1387–1401CrossRefPubMedGoogle Scholar
  69. 69.
    Van Veen V, Carter CS (2002) The timing of action-monitoring processes in the anterior cingulate cortex. J Cogn Neurosci 14:593–602CrossRefPubMedGoogle Scholar
  70. 70.
    Vapnik VN (2000) The nature of statistical learning theory. Springer, New YorkCrossRefGoogle Scholar
  71. 71.
    Velanova K, Wheeler ME, Luna B (2008) Maturational changes in anterior cingulate and frontoparietal recruitment support the development of error processing and inhibitory control. Cereb Cortex 18:2505–2522PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Waldmann H-C (2008) Kurzformen des HAWIK-IV: statistische Bewertung in verschiedenen Anwendungsszenarien. Diagnostica 54:202–210CrossRefGoogle Scholar
  73. 73.
    Weiler MD, Bellinger D, Simmons E, Rappaport L, Urion DK, Mitchell W, Bassett N, Burke PJ, Marmor J, Waber D (2000) Reliability and validity of a DSM-IV based ADHD screener. Child Neuropsychol 6:3–23CrossRefPubMedGoogle Scholar
  74. 74.
    WHO (2010) International Classification of Diseases (ICD-10)Google Scholar
  75. 75.
    Zhu C-Z, Zang Y-F, Cao Q-J, Yan C-G, He Y, Jiang T-Z, Sui M-Q, Wang Y-F (2008) Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder. Neuroimage 40:110–120CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Reto Iannaccone
    • 1
    • 2
  • Tobias U. Hauser
    • 1
    • 3
    • 4
  • Juliane Ball
    • 1
  • Daniel Brandeis
    • 1
    • 3
    • 5
    • 6
  • Susanne Walitza
    • 1
    • 3
    • 5
  • Silvia Brem
    • 1
    • 3
  1. 1.University Clinic for Child and Adolescent Psychiatry (UCCAP)University of ZurichZurichSwitzerland
  2. 2.PhD Program in Integrative Molecular MedicineUniversity of ZurichZurichSwitzerland
  3. 3.Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
  4. 4.Wellcome Trust Centre for NeuroimagingUniversity College LondonLondonUK
  5. 5.Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
  6. 6.Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental HealthMedical Faculty Mannheim/Heidelberg UniversityMannheimGermany

Personalised recommendations