Skip to main content

Advertisement

Log in

In silico toxicity and immunological interactions of components of calcium silicate-based and epoxy resin-based endodontic sealers

  • Research
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The present study aimed to determine in silico toxicity predictions of test compounds from hydraulic calcium silicate-based sealers (HCSBS) and AH Plus and computationally simulate the interaction between these substances and mediators of periapical inflammation via molecular docking.

Materials and Methods

All chemical information of the test compounds was obtained from the PubChem site. Predictions for bioavailability and toxicity analyses were determined by the Molinspiration Cheminformatics, pkCSM, ProTox-II and OSIRIS Property Explorer platforms. Molecular docking was performed using the Autodock4 AMDock v.1.5.2 program to analyse interactions between proteins (IL-1β, IL-6, IL-8, IL-10 and TNF-α) and ligands (calcium silicate hydrate, zirconium oxide, bisphenol-A epoxy resin, dibenzylamine, iron oxide and calcium tungstate) to establish the affinity and bonding mode between systems.

Results

Bisphenol-A epoxy resin had the lowest maximum dose tolerated in humans and was the test compound with the largest number of toxicological properties (hepatotoxicity, carcinogenicity and irritant). All systems had favourable molecular docking. However, the ligands bisphenol-A epoxy resin and dibenzylamine had the greatest affinity with the cytokines tested.

Conclusion

In silico predictions and molecular docking pointed the higher toxicity and greater interaction with mediators of periapical inflammation of the main test compounds from AH Plus compared to those from HCSBS.

Clinical Relevance

This is the first in silico study involving endodontic materials and may serve as the basis for further research that can generate more data, producing knowledge on the interference of each chemical compound in the composition of different root canal sealers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mann A, Zeng Y, Kirkpatrick T, van der Hoeven R, Silva R, Letra A et al (2022) Evaluation of the physicochemical and biological properties of EndoSequence BC Sealer HiFlow. J Endod 48:123–131. https://doi.org/10.1016/j.joen.2021.10.001

    Article  PubMed  Google Scholar 

  2. Muruzábal M, Erausquin J (1966) Response of periapical tissues in the rat molar to root canal fillings with Diaket and AH-26. Oral Surg Oral Med Oral Pathol 21:786–804. https://doi.org/10.1016/0030-4220(66)90103-4

    Article  PubMed  Google Scholar 

  3. Zhou H, Du T, Shen Y, Wang Z, Zheng Y, Haapasalo M (2015) In vitro cytotoxicity of calcium silicate-containing endodontic sealers. J Endod 41:56–61. https://doi.org/10.1016/j.joen.2014.09.012

    Article  PubMed  CAS  Google Scholar 

  4. Silva ECA, Tanomaru-Filho M, da Silva GF, Delfino MM, Cerri PS, Guerreiro-Tanomaru JM (2020) Biocompatibility and bioactive potential of new calcium silicate-based endodontic sealers: Bio-C Sealer and Sealer Plus BC. J Endod 46:1470–1477. https://doi.org/10.1016/j.joen.2020.07.011

    Article  PubMed  Google Scholar 

  5. Candeiro GTM, Moura-Netto C, D’Almeida-Couto RS, Azambuja-Júnior N, Marques MM, Cai S et al (2016) Cytotoxicity, genotoxicity and antibacterial effectiveness of a bioceramic endodontic sealer. Int Endod J 49:858–864. https://doi.org/10.1111/iej.12523

    Article  PubMed  CAS  Google Scholar 

  6. Seo D, Lee D, Kim Y, Song D, Kim S (2019) Biocompatibility and Mineralization Activity of three calcium silicate-based root canal sealers compared to conventional resin-based sealer in human dental pulp stem cells. Materials (Basel) 12:2482. https://doi.org/10.3390/ma12152482

    Article  ADS  PubMed  CAS  Google Scholar 

  7. Souza GL, Rosatto CMP, Silva MJB, Silva MV, Rocha Rodrigues DB, Moura CCG (2019) Evaluation of apoptosis/necrosis and cytokine release provoked by three root canal sealers in human polymorphonuclears and monocytes. Int Endod J 52:629–638. https://doi.org/10.1111/iej.13036

    Article  PubMed  CAS  Google Scholar 

  8. Silva EJNL, Ferreira CM, Pinto KP, Barbosa AFA, Colaço MV, Sassone LM (2021) Influence of variations in the environmental pH onthe solubility and water sorption of a calcium silicate-based root canal sealer. Int Endod J 54:1394–1402. https://doi.org/10.1111/iej.13526

    Article  PubMed  CAS  Google Scholar 

  9. Martinho FC, Camargo SEA, Fernandes AMM, Campos MS, Prado RF, Camargo CHR et al (2018) Comparison of cytotoxicity, genotoxicity and immunological inflammatory biomarker activity of several endodontic sealers against Immortalized human pulp cells. Int Endod J 51:41–57. https://doi.org/10.1111/iej.12785

    Article  PubMed  CAS  Google Scholar 

  10. Cintra LTA, Estrela C, Azuma MM, Queiroz IOA, Kawai T, Gomes-Filho JE (2018) Endodontic medicine: interrelationships among apical periodontitis, systemic disorders, and tissue responses of dental materials. Braz Oral Res 32:e68. https://doi.org/10.1590/1807-3107bor-2018.vol32.0068

    Article  PubMed  Google Scholar 

  11. Khandelwal A, Janani K, Teja K, Jose J, Battineni G, Riccitiello F, Valletta A et al (2022) Periapical healing following root canal treatment using different endodontic sealers: a systematic review. Biomed Res Int 2022:3569281. https://doi.org/10.1155/2022/3569281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Gaudin A, Tolar M, Peters OA (2020) Cytokine production and cytotoxicity of calcium silicate-based sealers in 2- and 3-dimensional cell culture models. J Endod 46:818–826. https://doi.org/10.1016/j.joen.2020.03.011

    Article  PubMed  Google Scholar 

  13. Tetko IV, Bruneau P, Mewes H, Rohrer DC, Poda GI (2006) Can we Estimate the Accuracy of ADMET Predictions? Drug Discov Today 11:700–707. https://doi.org/10.1016/j.drudis.2006.06.013

    Article  PubMed  CAS  Google Scholar 

  14. Valerio LG Jr (2009) In silico toxicology for the pharmaceutical sciences. Toxicol Appl Pharmacol 241:356–370. https://doi.org/10.1016/j.taap.2009.08.022

    Article  PubMed  CAS  Google Scholar 

  15. Bellera CL, Alberca LN, Sbaraglini ML, Talevi A (2020) In silico drug repositioning for Chagas disease. Curr Med Chem 27:662–675. https://doi.org/10.2174/0929867326666191016114839

    Article  PubMed  CAS  Google Scholar 

  16. Boreak N, Bhandi S (2022) In-Silico modulation of Interleukin-8 (IL8) for the therapeutic management of endodontic pulpitis. Saudi J Biol Sci 29:905–910. https://doi.org/10.1016/j.sjbs.2021.10.015

    Article  PubMed  CAS  Google Scholar 

  17. Trott O, Olson AJ (2009) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  Google Scholar 

  18. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26. https://doi.org/10.1016/S0169-409X(00)00129-0

    Article  PubMed  CAS  Google Scholar 

  19. Siqueira FS, Alves CFS, Machado AK, Siqueira JD, dos Santos T, Mizdal CR et al (2021) Molecular docking, quorum quenching effect, antibiofilm activity and safety profile of silver-complexed sulfonamide on Pseudomonas aeruginosa. Biofouling 37:555–571. https://doi.org/10.1080/08927014.2021.1939019

    Article  PubMed  CAS  Google Scholar 

  20. Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E (2020) AMDock: a versatile graphical tool for assisting molecular docking with Autodock Vina and Autodock4. Biol Direct 15:12. https://doi.org/10.1186/s13062-020-00267-2

    Article  PubMed  PubMed Central  Google Scholar 

  21. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al (2000) The protein data bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P et al (2002) The SIESTA method for ab initio order-N materials simulation. J Phys: Condens Matter 14:2745–2779. https://doi.org/10.1088/0953-8984/14/11/302

    Article  ADS  CAS  Google Scholar 

  23. Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ (2016) Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc 11:905–919. https://doi.org/10.1038/nprot.2016.051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Harris R, Olson AJ, Goodsell DS (2008) Automated prediction of ligand-binding sites in proteins. Proteins 70:1506–1517. https://doi.org/10.1002/prot.21645

    Article  PubMed  CAS  Google Scholar 

  25. Nishihira VSK, Rubim AM, Brondani M, dos Santos JT, Pohl AR, Friedrich JF et al (2019) In vitro and in silico protein corona formation evaluation of curcumin and capsaicin loaded-solid lipid nanoparticles. Toxicol in Vitro 61:104598. https://doi.org/10.1016/j.tiv.2019.104598

    Article  PubMed  CAS  Google Scholar 

  26. Laskowski RA, Swindells MB (2011) LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786. https://doi.org/10.1021/ci200227u

    Article  PubMed  CAS  Google Scholar 

  27. da Silveira CH, Pires DEV, Minardi RC, Ribeiro C, Veloso CJM, Lopes JCD et al (2009) Protein cutoff scanning: a comparative analysis of cutoff dependent and cutoff free methods for prospecting contacts in proteins. Proteins 74:727–743. https://doi.org/10.1002/prot.22187

    Article  PubMed  CAS  Google Scholar 

  28. Kenny PW (2019) The nature of ligand efficiency. J Cheminform 11:8. https://doi.org/10.1186/s13321-019-0330-2

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang L, McHale CM, Greene N, Snyder RD, Rich IN, Aardema MJ et al (2014) Emerging approaches in predictive toxicology. Environ Mol Mutagen 55:679–688. https://doi.org/10.1002/em.21885

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Vraníková B, Gajdziok J (2015) Bioavailability and factors influencing its rate. Ceska Slov Farm 64:7–13

    PubMed  Google Scholar 

  31. Economides N, Kotsaki-Kovatsi V, Poulopoulos A, Kolokuris I, Shore RG, R (1995) Experimental study of the biocompatibility of four root canal sealers and their influence on the zinc and calcium content of several tissues. J Endod 21:122–127. https://doi.org/10.1016/S0099-2399(06)80436-X

    Article  PubMed  CAS  Google Scholar 

  32. Queiroz IOA, Machado T, Alves CC, Vasques AMV, Cury MTS, Vasconcelos BC et al (2021) Tracing the toxic ions of an endodontic tricalcium silicate-based sealer in local tissues and body organs. J Trace Elem Med Biol 68:126856. https://doi.org/10.1016/j.jtemb.2021.126856

    Article  CAS  Google Scholar 

  33. Pires DEV, Blundell TL, Ascher DB (2015) pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J Med Chem 58:4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Janicka M, Mycka A, Sztanke M, Sztanke K (2021) Predicting Pharmacokinetic Properties of Potential Anticancer Agents via Their Chromatographic Behavior on Different Reversed Phase Materials. Int J Mol Sci 22:4257. https://doi.org/10.3390/ijms22084257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Banerjee P, Eckert AO, Schrey AK, Preissner R (2018) ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 46:W257–W263. https://doi.org/10.1093/nar/gky318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Phillips DH, Arlt VM (2009) Genotoxicity: damage to DNA and its consequences. EXS 99:87–110. https://doi.org/10.1007/978-3-7643-8336-7_4

    Article  PubMed  CAS  Google Scholar 

  37. Costa FMDS, Fernandes MH, de Medeiros SRB (2020) Genotoxicity of root canal sealers: a literature review. Clin Oral Investig 24:3347–3362. https://doi.org/10.1007/s00784-020-03478-z

    Article  Google Scholar 

  38. Erdogan H, Yildirim S, Cobankara FK (2021) Cytotoxicity and genotoxicity of salicylate- and calcium silicate-based root canal sealers on primer human periodontal ligament fibroblasts. Aust Endod J 47:645–653. https://doi.org/10.1111/aej.12537

    Article  PubMed  Google Scholar 

  39. Huang TH, Lii CK, Chou MY, Kao CT (2000) Lactate dehydrogenase leakage of hepatocytes with AH26 and AH Plus sealer treatments. J Endod 26:509–511. https://doi.org/10.1097/00004770-200009000-00005

    Article  PubMed  CAS  Google Scholar 

  40. Huang TH, Lii CK, Kao CT (2001) Root canal sealers cause cytotoxicity and oxidative damage in hepatocytes. J Biomed Mater Res 54:390–395. https://doi.org/10.1002/1097-4636(20010305)54:3%3c390::AID-JBM110%3e3.0.CO;2-U

    Article  Google Scholar 

  41. Simsek N, Bulut ET, Ahmetoğlu F, Alan H (2016) Determination of trace elements in rat organs implanted with endodontic repair materials by ICP-MS. J Mater Sci Mater Med 27:46. https://doi.org/10.1007/s10856-015-5663-4

    Article  PubMed  CAS  Google Scholar 

  42. Athanassiadis B, George GA, Abbott PV, Wash LJ (2015) A review of the effects of formaldehyde release from endodontic materials. Int Endod J 48:829–838. https://doi.org/10.1111/iej.12389

    Article  PubMed  CAS  Google Scholar 

  43. Camargo CH, Camargo SE, Valera MC, Hiller KA, Schmalz G, Schweikl H (2009) The induction of cytotoxicity, oxidative stress, and genotoxicity by root canal sealers in mammalian cells. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:952–960. https://doi.org/10.1016/j.tripleo.2009.07.015

    Article  PubMed  Google Scholar 

  44. Sfeir G, Zogheib C, Patel S, Giraud T, Nagendrababu V, Bukiet F (2021) Calcium Silicate-Based Root Canal Sealers: A Narrative Review and Clinical Perspectives. Materials (Basel) 14:3965. https://doi.org/10.3390/ma14143965

    Article  ADS  PubMed  CAS  Google Scholar 

  45. Cardinali F, Camilleri J (2023) A critical review of the material properties guiding the clinician’s choice of root canal sealers. Clin Oral Investig 27:4147–4155. https://doi.org/10.1007/s00784-023-05140-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Oh H, Kim E, Lee S, Park S, Chen D, Shin S et al (2020) Comparison of biocompatibility of calcium cilicate-based sealers and epoxy resin-based sealer on human periodontal ligament stem cells. Materials (Basel) 13:5242. https://doi.org/10.3390/ma13225242

    Article  ADS  PubMed  CAS  Google Scholar 

  47. Silva EJNL, Santos CC, Zaia AA (2013) Long-term cytotoxic effects of contemporary root canal sealers. J Appl Oral Sci 21:43–47. https://doi.org/10.1590/1678-7757201302304

    Article  PubMed  PubMed Central  Google Scholar 

  48. Schwarze T, Leyhausen G, Geurtsen W (2002) Long-term cytocompatibility of various endodontic sealers using a new root canal model. J Endod 28:749–753. https://doi.org/10.1097/00004770-200211000-00001

    Article  PubMed  CAS  Google Scholar 

  49. Antonijević D, Despotović A, Biočanin V, Milošević M, Trišić D, Lazović V et al (2021) Influence of the addition of different radiopacifiers and bioactive nano-hydroxyapatite on physicochemical and biological properties of calcium silicate based endodontic ceramic. Ceram Int 47:28913–28923. https://doi.org/10.1016/j.ceramint.2021.07.052

    Article  CAS  Google Scholar 

  50. Toledo AON, Couto AMD, Madeira MFM, Caldeira PC, Queiroz-Junior CM, Aguiar MCF (2019) Cytokines and chemokines associated with Treg/Th17 response in chronic inflammatory periapical disease. Braz Oral Res 33:e093. https://doi.org/10.1590/1807-3107bor-2019.vol33.0093

    Article  PubMed  Google Scholar 

  51. Pantsar T, Poso A (2018) Binding Affinity via Docking: Fact and Fiction. Molecules 23:1899. https://doi.org/10.3390/molecules23081899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Hosseinpour S, Gaudin A, Peters OA (2022) A critical analysis of research methods and experimental models to study biocompatibility of endodontic materials. Int Endod J 55:346–369. https://doi.org/10.1111/iej.13701

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Graduate Program in Nanosciences (Universidade Franciscana—Santa Maria, RS, Brazil) for support.

Funding

No funding was obtained for this study.

Author information

Authors and Affiliations

Authors

Contributions

Cristiana Pereira Malta: conceptualization; data curation; formal analysis; investigation; methodology; validation; visualization; writing—original draft. Raquel Cristine Silva Barcelos: data curation; formal analysis; visualization; writing—review and editing. Pâmella Schramm Fernandes: data curation; formal analysis; methodology; software; validation. Mirkos Ortiz Martins: data curation; formal analysis; methodology; software; validation. Michele Rorato Sagrillo: conceptualization; project administration; supervision; visualization; writing—review and editing. Carlos Alexandre Souza Bier: conceptualization; project administration; supervision; visualization; writing—review and editing. Renata Dornelles Morgental: conceptualization; project administration; supervision; visualization; writing—review and editing.

Corresponding author

Correspondence to Cristiana Pereira Malta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics Approval and Consent to Participate

Not Applicable.

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malta, C.P., Barcelos, R.C.S., Fernandes, P.S. et al. In silico toxicity and immunological interactions of components of calcium silicate-based and epoxy resin-based endodontic sealers. Clin Oral Invest 28, 148 (2024). https://doi.org/10.1007/s00784-024-05548-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00784-024-05548-y

Keywords

Navigation