Skip to main content

Advertisement

Log in

Do bioactive materials show greater retention rates in restoring permanent teeth than non-bioactive materials? A systematic review and network meta-analysis of randomized controlled trials

  • Review
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

To answer the following research question: does the clinical evaluation of restorations on permanent teeth with bioactive materials show greater retention rates than those with non-bioactive materials?

Materials and methods

A search strategy was used in the following databases: MEDLINE via PubMed, Scopus, Web of Science, LILACS, BBO, Embase, The Cochrane Library, and OpenGrey. Randomized controlled trials (RCTs), with a minimum of 2-year follow-up and evaluating at least one bioactive material in permanent teeth were included. Risk of bias was detected according to the Cochrane Collaboration tool for assessing the risk of bias (RoB 2.0), and network meta-analysis was performed using a random-effects Bayesian-mixed treatment comparison model.

Results

Twenty-seven studies were included. The success of the restorations was assessed using modified USPHS system in 24 studies and the FDI criteria in 3 studies. Network meta-analysis revealed three networks based on restoration preparations. Resin composites were ranked with higher SUCRA values, indicating a greater likelihood of being the preferred treatment for class I, II, and III restorations. In class V, resin-modified glass ionomer cement was ranked with the highest value.

Conclusion

Bioactive restorative materials showed similar good clinical performance in terms of retention similarly to conventional resin composites.

Clinical significance

The findings must be interpreted with caution because many RCT on restorative materials aim to verify the equivalence of new materials over the gold standard material rather than their superiority. The present systematic review also suggests that new RCT with longer follow-up periods are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Choi JE, Lyons KM, Kieser JA, Waddell NJ (2017) Diurnal variation of intraoral pH and temperature. BDJ Open 3. https://doi.org/10.1038/BDJOPEN.2017.15

  2. Choi JE, Waddell JN, Lyons KM, Kieser JA (2016) Intraoral pH and temperature during sleep with and without mouth breathing. J Oral Rehabil 43:356–363. https://doi.org/10.1111/JOOR.12372

    Article  PubMed  CAS  Google Scholar 

  3. Demarco FF, Corrêa MB, Cenci MS, Moraes RR, Opdam NJM (2012) Longevity of posterior composite restorations: not only a matter of materials. Dent Mater 28:87–101. https://doi.org/10.1016/J.DENTAL.2011.09.003

    Article  PubMed  CAS  Google Scholar 

  4. Manhart J, García-Godoy F, Hickel R (2002) Direct posterior restorations: clinical results and new developments. Dent Clin North Am 46:303–339. https://doi.org/10.1016/S0011-8532(01)00010-6

    Article  PubMed  Google Scholar 

  5. Xu HH, Weir MD, Sun L, Moreau JL, Takagi S, Chow LC, Antonucci JM (2010) Strong nanocomposites with Ca, PO(4), and F release for caries inhibition. J Dent Res 89:19–28. https://doi.org/10.1177/0022034509351969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Mehdawi IM, Pratten J, Spratt DA, Knowles JC, Young AM (2013) High strength re-mineralizing, antibacterial dental composites with reactive calcium phosphates. Dent Mater 29:473–484. https://doi.org/10.1016/j.dental.2013.01.010

    Article  PubMed  CAS  Google Scholar 

  7. Turrer CL, Ferreira FPM (2008) Biomateriais em Cirurgia Craniomaxilofacial: princípios básicos e aplicações - revisão de literatura. Rev Bras Cir Plást 23(3):234–239

  8. Whitlow J, Paul A, Polini A (2016) Bioactive materials: definitions and application in tissue engineering and regeneration therapy. In: Marchi J (ed) Biocompatible Glasses: From Bone Regeneration to Cancer Treatment. Springer International Publishing, Cham, pp 1–17

    Google Scholar 

  9. Pereira APV, Oréfice RL, WLV Novos biomateriais: híbridos orgânico-inorgânicos bioativos. Polímeros 9:104–109. https://doi.org/10.1590/S0104-14281999000400018

  10. Liang K, Wang S, Tao S, Xiao S, Zhou H, Wang P, Cheng L, Zhou X, Weir MD, Oates TW, Li J, Xu HHK (2019) Dental remineralization via poly(amido amine) and restorative materials containing calcium phosphate nanoparticles. Int J Oral Sci 11:15. https://doi.org/10.1038/s41368-019-0048-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Deligeorgi V, Mjör IA, Wilson NH (2001) An overview of reasons for the placement and replacement of restorations. Prim Dent Care 8:5–11. https://doi.org/10.1308/135576101771799335

    Article  PubMed  CAS  Google Scholar 

  12. Mjör IA, Moorhead JE, Dahl JE (2000) Reasons for replacement of restorations in permanent teeth in general dental practice. Int Dent J 50:361–366. https://doi.org/10.1111/j.1875-595x.2000.tb00569.x

    Article  PubMed  Google Scholar 

  13. Franco EB, Pascotto RC (1990) Motives for placement and replacement of dental restoration. Rev Odontol Univ Sao Paulo 4:234–240

    PubMed  CAS  Google Scholar 

  14. Hicks J, Garcia-Godoy F, Donly K, Flaitz C (2003) Fluoride-releasing restorative materials and secondary caries. J Calif Dent Assoc 31:229–245

    PubMed  Google Scholar 

  15. Goldstein GR (2010) The longevity of direct and indirect posterior restorations is uncertain and may be affected by a number of dentist-, patient-, and material-related factors. J Evidence Based Dental Pract 10:30–31. https://doi.org/10.1016/j.jebdp.2009.11.015

    Article  Google Scholar 

  16. Park EY, Kang S (2020) Current aspects and prospects of glass ionomer cements for clinical dentistry. Yeungnam Univ J Med 37:169–178. https://doi.org/10.12701/yujm.2020.00374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Abdel-karim UM, El-Eraky M, Etman WM (2014) Three-year clinical evaluation of two nano-hybrid giomer restorative composites. Tanta Dental J 11:213–222. https://doi.org/10.1016/j.tdj.2014.10.004

    Article  Google Scholar 

  18. Itota T, Carrick TE, Yoshiyama M, McCabe JF (2004) Fluoride release and recharge in giomer, compomer and resin composite. Dent Mater 20:789–795. https://doi.org/10.1016/j.dental.2003.11.009

    Article  PubMed  CAS  Google Scholar 

  19. Rusnac ME, Gasparik C, Irimie AI, Grecu AG, Mesaroş AŞ, Dudea D (2019) Giomers in dentistry – at the boundary between dental composites and glass-ionomers. Med Pharm Rep 92:123. https://doi.org/10.15386/MPR-1169

    Article  PubMed  PubMed Central  Google Scholar 

  20. Helfer AR, Melnick S, Schilder H (1972) Determination of the moisture content of vital and pulpless teeth. Oral Surg Oral Med Oral Pathol 34:661–670. https://doi.org/10.1016/0030-4220(72)90351-9

    Article  PubMed  CAS  Google Scholar 

  21. Opdam NJ, van de Sande FH, Bronkhorst E, Cenci MS, Bottenberg P, Pallesen U, Gaengler P, Lindberg A, Huysmans MC, van Dijken JW (2014) Longevity of posterior composite restorations: a systematic review and meta-analysis. J Dent Res 93:943–949. https://doi.org/10.1177/0022034514544217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Delaviz Y, Finer Y, Santerre JP (2014) Biodegradation of resin composites and adhesives by oral bacteria and saliva: a rationale for new material designs that consider the clinical environment and treatment challenges. Dent Mater 30:16–32. https://doi.org/10.1016/j.dental.2013.08.201

    Article  PubMed  CAS  Google Scholar 

  23. Ástvaldsdóttir Á, Dagerhamn J, Van Dijken JWV, Naimi-Akbar A, Sandborgh-Englund G, Tranæus S, Nilsson M (2015) Longevity of posterior resin composite restorations in adults – A systematic review. J Dent 43:934–954. https://doi.org/10.1016/J.JDENT.2015.05.001

    Article  PubMed  Google Scholar 

  24. Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, Ioannidis JPA, Straus S, Thorlund K, Jansen JP, Mulrow C, Catala-Lopez F, Gotzsche PC, Dickersin K, Boutron I, Altman DG, Moher D (2015) The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 162:777–784. https://doi.org/10.7326/M14-2385

    Article  PubMed  Google Scholar 

  25. Cochrane Handbook for Systematic Reviews of Interventions | Cochrane Training. https://training.cochrane.org/handbook. Accessed 14 Apr 2023

  26. Rayyan - AI Powered Tool for Systematic Literature Reviews. https://www.rayyan.ai/. Accessed 14 Apr 2023

  27. van Valkenhoef G, Lu G, de Brock B, Hillege H, Ades AE, Welton NJ (2012) Automating network meta-analysis. Res Synth. Methods 3:285–299. https://doi.org/10.1002/jrsm.1054

    Article  Google Scholar 

  28. Heintze SD, Rousson V (2012) Clinical effectiveness of direct class II restorations - a meta-analysis. J Adhes Dent 14:407–431. https://doi.org/10.3290/j.jad.a28390

    Article  PubMed  Google Scholar 

  29. Salanti G, Higgins JP, Ades AE, Ioannidis JP (2008) Evaluation of networks of randomized trials. Stat Methods Med Res 17:279–301. https://doi.org/10.1177/0962280207080643

    Article  MathSciNet  PubMed  Google Scholar 

  30. (2008) Methods guide for effectiveness and comparative effectiveness reviews [Internet]. Agency for Healthcare Research and Quality (US), Rockville (MD)

  31. Dias S, Welton NJ, Sutton AJ, Caldwell DM, Lu G, Ades AE (2013) Evidence synthesis for decision making 4: inconsistency in networks of evidence based on randomized controlled trials. Med Decis Making 33:641–656. https://doi.org/10.1177/0272989x12455847

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dias S, Welton NJ, Caldwell DM, Ades AE (2010) Checking consistency in mixed treatment comparison meta-analysis. Stat Med 29:932–944. https://doi.org/10.1002/SIM.3767

    Article  MathSciNet  PubMed  CAS  Google Scholar 

  33. Salanti G, Ades AE, Ioannidis JP (2011) Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol 64:163–171. https://doi.org/10.1016/j.jclinepi.2010.03.016

    Article  PubMed  Google Scholar 

  34. Puhan MA, Schünemann HJ, Murad MH, Li T, Brignardello-Petersen R, Singh JA, Kessels AG, Guyatt GH (2014) A GRADE Working Group approach for rating the quality of treatment effect estimates from network meta-analysis. BMJ 349. https://doi.org/10.1136/BMJ.G5630

  35. Miletić I, Baraba A, Basso M, Pulcini MG, Marković D, Perić T, Ozkaya CA, Turkun LS (2020) Clinical performance of a glass-hybrid system compared with a resin composite in the posterior region: results of a 2-year multicenter study. J Adhes Dent 22:235–247. https://doi.org/10.3290/j.jad.a44547

    Article  PubMed  Google Scholar 

  36. Mandari GJ, Frencken JE, van’t Hof MA (2003) Six-year success rates of occlusal amalgam and glass-ionomer restorations placed using three minimal intervention approaches. Caries Res 37:246–253. https://doi.org/10.1159/000070866

    Article  PubMed  CAS  Google Scholar 

  37. Wucher M, Grobler SR, Senekal PJ (2002) A 3-year clinical evaluation of a compomer, a composite and a compomer/composite (sandwich) in class II restorations. Am J Dent 15:274–278

    PubMed  Google Scholar 

  38. Gurgan S, Kutuk ZB, Yalcin Cakir F, Ergin E (2020) A randomized controlled 10 years follow up of a glass ionomer restorative material in class I and class II cavities. J Dent 94:103175. https://doi.org/10.1016/j.jdent.2019.07.013

    Article  PubMed  Google Scholar 

  39. Mu HL, Tian FC, Wang XY, Gao XJ (2020) Evaluation of wear property of Giomer and universal composite in vivo. Beijing da xue xue bao Yi xue ban = J Pek Univ Health Sci 53:120–125. https://doi.org/10.19723/J.ISSN.1671-167X.2021.01.018

    Article  CAS  Google Scholar 

  40. Gurgan S, Kutuk ZB, Ozturk C, Soleimani R, Cakir FY (2020) Clinical performance of a glass hybrid restorative in extended size class II cavities. Oper Dent 45:243–254. https://doi.org/10.2341/18-282-c

    Article  PubMed  CAS  Google Scholar 

  41. Demirci M, Yildiz E, Uysal O (2008) Comparative clinical evaluation of different treatment approaches using a microfilled resin composite and a compomer in class III cavities: two-year results. Oper Dent 33:7–14. https://doi.org/10.2341/07-34

    Article  PubMed  Google Scholar 

  42. van Dijken JW (2001) Durability of new restorative materials in class III cavities. J Adhes Dent 3:65–70

    PubMed  Google Scholar 

  43. Brackett WW, Dib A, Brackett MG, Reyes AA, Estrada BE (2003) Two-year clinical performance of class V resin-modified glass-lonomer and resin composite restorations. Oper Dent 28:477–481

    PubMed  Google Scholar 

  44. Burgess JO, Gallo JR, Ripps AH, Walker RS, Ireland EJ (2004) Clinical evaluation of four class 5 restorative materials: 3-year recall. Am J Dent 17:147–150

    PubMed  Google Scholar 

  45. Çelik EU, Tunac AT, Yilmaz F (2018) A randomized, controlled, split-mouth trial evaluating the clinical performance of high-viscosity glass-ionomer restorations in noncarious cervical lesions: two-year results. J Adhes Dent 20:299–305. https://doi.org/10.3290/J.JAD.A40985

    Article  PubMed  Google Scholar 

  46. Fagundes TC, Barata TJ, Bresciani E, Santiago S, Franco EB, Lauris JR, Navarro MF (2014) Seven-year clinical performance of resin composite versus resin-modified glass ionomer restorations in noncarious cervical lesions. Oper Dent 39:578–587. https://doi.org/10.2341/13-054-c

    Article  PubMed  CAS  Google Scholar 

  47. Folwaczny M, Loher C, Mehl A, Kunzelmann KH, Hickel R (2001) Class V lesions restored with four different tooth-colored materials–3-year results. Clin Oral Investig 5:31–39. https://doi.org/10.1007/s007840000098

    Article  PubMed  CAS  Google Scholar 

  48. Franco EB, Benetti AR, Ishikiriama SK, Santiago SL, Lauris JR, Jorge MF, Navarro MF (2006) 5-year clinical performance of resin composite versus resin modified glass ionomer restorative system in non-carious cervical lesions. Oper Dent 31:403–408. https://doi.org/10.2341/05-87

    Article  PubMed  Google Scholar 

  49. Gallo JR, Burgess JO, Ripps AH, Walker RS, Ireland EJ, Mercante DE, Davidson JM (2005) Three-year clinical evaluation of a compomer and a resin composite as Class V filling materials. Oper Dent 30:275–281

    PubMed  Google Scholar 

  50. Hatirli H, Yasa B, Çelik EU (2021) Clinical performance of high-viscosity glass ionomer and resin composite on minimally invasive occlusal restorations performed without rubber-dam isolation: a two-year randomised split-mouth study. Clin Oral Investig 25:5493–5503. https://doi.org/10.1007/s00784-021-03857-0

    Article  PubMed  Google Scholar 

  51. Kaurich M, Kawakami K, Perez P, Munn T, Hasse AL, Garrett NR (1991) A clinical comparison of a glass ionomer cement and a microfilled composite resin in restoring root caries: two-year results. Gen Dent 39:346–349

    PubMed  CAS  Google Scholar 

  52. Koc Vural U, Meral E, Ergin E, Gürgan S (2020) Twenty-four-month clinical performance of a glass hybrid restorative in non-carious cervical lesions of patients with bruxism: a split-mouth, randomized clinical trial. Clin Oral Investig 24:1229–1238. https://doi.org/10.1007/S00784-019-02986-X

    Article  PubMed  Google Scholar 

  53. Levy SM, Jensen ME (1990) A clinical evaluation of the restoration of root surface caries. Spec Care Dentist 10:156–160. https://doi.org/10.1111/j.1754-4505.1990.tb00784.x

    Article  PubMed  CAS  Google Scholar 

  54. Matis BA, Cochran MJ, Carlson TJ, Guba C, Eckert GJ (2004) A three-year clinical evaluation of two dentin bonding agents. J Am Dent Assoc 135:451–457. https://doi.org/10.14219/jada.archive.2004.0209

    Article  PubMed  CAS  Google Scholar 

  55. Onal B, Pamir T (2005) The two-year clinical performance of esthetic restorative materials in noncarious cervical lesions. J Am Dent Assoc 136:1547–1555. https://doi.org/10.14219/jada.archive.2005.0085

    Article  PubMed  Google Scholar 

  56. Ozgünaltay G, Onen A (2002) Three-year clinical evaluation of a resin modified glass-ionomer cement and a composite resin in non-carious class V lesions. J Oral Rehabil 29:1037–1041. https://doi.org/10.1046/j.1365-2842.2002.00995.x

    Article  PubMed  Google Scholar 

  57. Pollington S, van Noort R (2008) A clinical evaluation of a resin composite and a compomer in non-carious Class V lesions. A 3-year follow-up. Am J Dent 21:49–52

    PubMed  Google Scholar 

  58. Powell LV, Gordon GE, Johnson GH (1992) Clinical comparison of Class V resin composite and glass ionomer restorations. Am J Dent 5:249–252

    PubMed  CAS  Google Scholar 

  59. Santiago SL, Passos VF, Vieira AHM, de L Navarro MF, Lauris JRP, Franco EB (2010) Two-year clinical evaluation of resinous restorative systems in non-carious cervical lesions. Braz Dent J 21:229–234. https://doi.org/10.1590/S0103-64402010000300010

    Article  PubMed  Google Scholar 

  60. Stojanac IL, Premovic MT, Ramic BD, Drobac MR, Stojsin IM, Petrovic LM (2013) Noncarious cervical lesions restored with three different tooth-colored materials: two-year results. Oper Dent 38:12–20. https://doi.org/10.2341/12-046-c

    Article  PubMed  CAS  Google Scholar 

  61. Türkün LS, Celik EU (2008) Noncarious class V lesions restored with a polyacid modified resin composite and a nanocomposite: a two-year clinical trial. J Adhes Dent 10:399–405

    PubMed  Google Scholar 

  62. Cope S, Jansen JP (2013) Quantitative summaries of treatment effect estimates obtained with network meta-analysis of survival curves to inform decision-making. BMC Med Res Methodol 13. https://doi.org/10.1186/1471-2288-13-147

  63. Mbuagbaw L, Rochwerg B, Jaeschke R, Heels-Andsell D, Alhazzani W, Thabane L, Guyatt GH (2017) Approaches to interpreting and choosing the best treatments in network meta-analyses. Syst Rev 6:1–5. https://doi.org/10.1186/S13643-017-0473-Z/FIGURES/2

    Article  Google Scholar 

  64. Blatz MB (2021) Adhesive dentistry: just bond it! Compend Contin Educ Dent 42:536–537

    PubMed  Google Scholar 

  65. Pazinatto FB, Gionordoli Neto R, Wang L, Mondelli J, Mondelli RF, Navarro MF (2012) 56-month clinical performance of class I and II resin composite restorations. J Appl Oral Sci 20:323–328. https://doi.org/10.1590/s1678-77572012000300005

    Article  PubMed  PubMed Central  Google Scholar 

  66. Loguercio AD, Rezende M, Gutierrez MF, Costa TF, Armas-Vega A, Reis A (2019) Randomized 36-month follow-up of posterior bulk-filled resin composite restorations. J Dent 85:93–102. https://doi.org/10.1016/j.jdent.2019.05.018

    Article  PubMed  CAS  Google Scholar 

  67. Falacho RI, Melo EA, Marques JA, Ramos JC, Guerra F, Blatz MB (2022) Clinical evaluation of the effect of rubber dam isolation on bond strength to enamel. J Esthet Restor Dent. https://doi.org/10.1111/jerd.12979

    Article  PubMed  Google Scholar 

  68. Gaengler P, Hoyer I, Montag R (2001) Clinical evaluation of posterior composite restorations: the 10-year report. J Adhes Dent 3:185–194

    PubMed  CAS  Google Scholar 

  69. Hellyer P (2022) The longevity of composite restorations. Br Dent J 232:459. https://doi.org/10.1038/s41415-022-4163-4

    Article  PubMed  Google Scholar 

  70. Dačić S, Miljković M, Mitić A, Radenković G, Anđelković-Apostolović M, Jovanović M (2021) Influence of etching mode and composite resin type on bond strength to dentin using universal adhesive system. Microsc Res Tech 84:1212–1219. https://doi.org/10.1002/jemt.23680

    Article  PubMed  CAS  Google Scholar 

  71. Da Rosa Rodolpho PA, Rodolfo B, Collares K, Correa MB, Demarco FF, Opdam NJM, Cenci MS, Moraes RR (2022) Clinical performance of posterior resin composite restorations after up to 33 years. Dent Mater 38:680–688. https://doi.org/10.1016/J.DENTAL.2022.02.009

    Article  PubMed  Google Scholar 

  72. Neto CCL, das Neves AM, Arantes DC, Sa TCM, Yamauti M, de Magalhães CS, Abreu LG, Moreira AN (2022) Evaluation of the clinical performance of GIOMERs and comparison with other conventional restorative materials in permanent teeth: a systematic review and meta-analysis. Evid Based Dent. https://doi.org/10.1038/s41432-022-0281-8

    Article  PubMed  Google Scholar 

  73. Gordan VV, Mondragon E, Watson RE, Garvan C, Mjör IA (2007) A clinical evaluation of a self-etching primer and a giomer restorative material: results at eight years. J Am Dent Assoc 138:621–627. https://doi.org/10.14219/jada.archive.2007.0233

    Article  PubMed  CAS  Google Scholar 

  74. Gordan VV, Blaser PK, Watson RE, Mjör IA, McEdward DL, Sensi LG, Riley JL (2014) A clinical evaluation of a giomer restorative system containing surface prereacted glass ionomer filler: results from a 13-year recall examination. J Am Dent Assoc 145:1036–1043. https://doi.org/10.14219/JADA.2014.57

    Article  PubMed  Google Scholar 

  75. Toz-Akalin T, Öztürk-Bozkurt F, Kusdemir M, Özsoy A, Yüzbaşıoğlu E, Özcan M (2023) Clinical evaluation of low-shrinkage bioactive material giomer versus nanohybrid resin composite restorations: a two-year prospective controlled clinical trial. Oper Dent 48:10–20. https://doi.org/10.2341/21-155-C

    Article  PubMed  CAS  Google Scholar 

  76. De Castro Kruly P, Giannini M, Pascotto RC, Tokubo LM, Suga USG, De Castro Ruiz Marques A, Terada RSS (2018) Meta-analysis of the clinical behavior of posterior direct resin restorations: low polymerization shrinkage resin in comparison to methacrylate composite resin. PLoS One 13. https://doi.org/10.1371/JOURNAL.PONE.0191942

  77. Wilson MA, Cowan AJ, Randall RC, Crisp RJ, Wilson NHF (2002) A practice-based, randomized, controlled clinical trial of a new resin composite restorative: one-year results. Oper Dent 27:423–429

    PubMed  CAS  Google Scholar 

  78. Moraschini V, Fai CK, Alto RM, Dos Santos GO (2015) Amalgam and resin composite longevity of posterior restorations: a systematic review and meta-analysis. J Dent 43:1043–1050. https://doi.org/10.1016/j.jdent.2015.06.005

    Article  PubMed  CAS  Google Scholar 

  79. Opdam NJ, Bronkhorst EM, Roeters JM, Loomans BA (2007) A retrospective clinical study on longevity of posterior composite and amalgam restorations. Dent Mater 23:2–8. https://doi.org/10.1016/j.dental.2005.11.036

    Article  PubMed  CAS  Google Scholar 

  80. Opdam NJ, Bronkhorst EM, Loomans BA, Huysmans MC (2010) 12-year survival of composite vs. amalgam restorations. J Dent Res 89:1063–1067. https://doi.org/10.1177/0022034510376071

    Article  PubMed  CAS  Google Scholar 

  81. Worthington HV, Khangura S, Seal K, Mierzwinski-Urban M, Veitz-Keenan A, Sahrmann P, Schmidlin PR, Davis D, Iheozor-Ejiofor Z, Rasines Alcaraz MG (2021) Direct composite resin fillings versus amalgam fillings for permanent posterior teeth. Cochrane Database Syst Rev 8:Cd005620. https://doi.org/10.1002/14651858.CD005620.pub3

    Article  PubMed  Google Scholar 

  82. Balaji S (2019) Mercury, dentistry, minamata convention and research opportunities. Indian J Dent Res 30:819. https://doi.org/10.4103/IJDR.IJDR_924_19

    Article  PubMed  CAS  Google Scholar 

  83. Jingarwar MM, Bajwa NK, Pathak A (2014) Minimal intervention dentistry – a new frontier in clinical dentistry. J Clin Diagn Res 8:ZE04. https://doi.org/10.7860/JCDR/2014/9128.4583

    Article  Google Scholar 

  84. Wilson N, Lynch C (2013) Amalgam and minimal intervention: an incompatible relationship. Prim Dent J 2:18

    Article  PubMed  Google Scholar 

  85. Tibau AV, Grube BD (2019) Mercury contamination from dental amalgam. J Health Pollut 9:190612. https://doi.org/10.5696/2156-9614-9.22.190612

    Article  PubMed  PubMed Central  Google Scholar 

  86. Frankenberger R, Garcia-Godoy F, Kramer N (2009) Clinical performance of viscous glass ionomer cement in posterior cavities over two years. Int J Dent 2009:781462. https://doi.org/10.1155/2009/781462

    Article  PubMed  Google Scholar 

  87. Sidhu SK (2011) Glass-ionomer cement restorative materials: a sticky subject? Aust Dent J 56(Suppl 1):23–30. https://doi.org/10.1111/j.1834-7819.2010.01293.x

    Article  PubMed  Google Scholar 

  88. Burke FJ (2013) Dental materials–what goes where? The current status of glass ionomer as a material for loadbearing restorations in posterior teeth. Dent Update 40:840–844. https://doi.org/10.12968/denu.2013.40.10.840

    Article  PubMed  Google Scholar 

  89. de Lima Navarro MF, Pascotto RC, Borges AFS, Soares CJ, Raggio DP, Rios D, Bresciani E, Molina GF, Ngo HC, Miletić I, Frencken J, Wang L, Menezes-Silva R, Puppin-Rontani RM, de Carvalho RM, Gurgan S, Leal SC, Tüzüner T, Fagundes TC, Nicholson JW, Sidhu SK (2021) Consensus on glass-ionomer cement thresholds for restorative indications. J Dent 107:103609. https://doi.org/10.1016/J.JDENT.2021.103609

    Article  PubMed  Google Scholar 

  90. Xie D, Brantley WA, Culbertson BM, Wang G (2000) Mechanical properties and microstructures of glass-ionomer cements. Dent Mater 16:129–138. https://doi.org/10.1016/S0109-5641(99)00093-7

    Article  PubMed  CAS  Google Scholar 

  91. Musanje L, Shu M, Darvell BW (2001) Water sorption and mechanical behaviour of cosmetic direct restorative materials in artificial saliva. Dent Mater 17:394–401. https://doi.org/10.1016/s0109-5641(00)00097-x

    Article  PubMed  CAS  Google Scholar 

  92. Yap AU, Chung SM, Rong Y, Tsai KT (2004) Effects of aging on mechanical properties of composite restoratives: a depth-sensing microindentation approach. Oper Dent 29:547–553

    PubMed  Google Scholar 

  93. Ilie N, Hickel R (2009) Investigations on mechanical behaviour of dental composites. Clin Oral Investig 13:427–438. https://doi.org/10.1007/s00784-009-0258-4

    Article  PubMed  Google Scholar 

  94. Nicholson JW, Gjorgievska E, Bajraktarova B, McKenzie MA (2003) Changes in properties of polyacid-modified composite resins (compomers) following storage in acidic solutions. J Oral Rehabil 30:601–607. https://doi.org/10.1046/j.1365-2842.2003.01041.x

    Article  PubMed  CAS  Google Scholar 

  95. Demarco FF, Collares K, Coelho-de-Souza FH, Correa MB, Cenci MS, Moraes RR, Opdam NJ (2015) Anterior composite restorations: a systematic review on long-term survival and reasons for failure. Dent Mater 31:1214–1224. https://doi.org/10.1016/j.dental.2015.07.005

    Article  PubMed  Google Scholar 

  96. Shah YR, Shiraguppi VL, Deosarkar BA, Shelke UR (2021) Long-term survival and reasons for failure in direct anterior composite restorations: a systematic review. J Conserv Dent 24:415–420. https://doi.org/10.4103/jcd.jcd_527_21

    Article  PubMed  Google Scholar 

  97. Cargnin LL (2002) A Utilização das Resinas Compostas Modificadas por Poliácidos (compômeros) em Odontopediatria. Biblioteca Setorial de odontologia da UFSC

  98. van Dijken JW (1996) 3-year clinical evaluation of a compomer, a resin-modified glass ionomer and a resin composite in Class III restorations. Am J Dent 9:195–198

    PubMed  Google Scholar 

  99. Mohan Das U, Viswanath D, Azher U (2009) Clinical evaluation of resin composite and resin modified glass ionomer in class III restorations of primary maxillary incisors: a comparative in vivo study. Int J Clin Pediatr Dent 2:13–19. https://doi.org/10.5005/jp-journals-10005-1024

    Article  PubMed  PubMed Central  Google Scholar 

  100. Perez CDR, Gonzalez MR, Prado NAS, De Miranda MSF, MacÊdo MDA, Fernandes BMP (2012) Restoration of noncarious cervical lesions: when, why, and how. Int J Dent 2012. https://doi.org/10.1155/2012/687058

  101. Perez CR (2010) Alternative technique for class V resin composite restorations with minimum finishing/polishing procedures. Oper Dent 35:375–379. https://doi.org/10.2341/09-310-TR

    Article  PubMed  Google Scholar 

  102. Heintze SD, Ruffieux C, Rousson V (2010) Clinical performance of cervical restorations–a meta-analysis. Dent Mater 26:993–1000. https://doi.org/10.1016/J.DENTAL.2010.06.003

    Article  PubMed  CAS  Google Scholar 

  103. Gordan VV (2001) Clinical evaluation of replacement of class V resin based composite restorations. J Dent 29:485–488. https://doi.org/10.1016/S0300-5712(01)00030-6

    Article  PubMed  CAS  Google Scholar 

  104. Palamara JEA, Palamara D, Messer HH, Tyas MJ (2006) Tooth morphology and characteristics of non-carious cervical lesions. J Dent 34:185–194. https://doi.org/10.1016/J.JDENT.2005.05.005

    Article  PubMed  CAS  Google Scholar 

  105. Karan K, Yao X, Xu C, Wang Y (2012) Chemical characterization of etched dentin in non-carious cervical lesions. J Adhes Dent 14. https://doi.org/10.3290/J.JAD.A22766

  106. Hoshika S, De Munck J, Sano H, Sidhu SK, Van Meerbeek B (2015) Effect of conditioning and aging on the bond strength and interfacial morphology of glass-ionomer cement bonded to dentin. J Adhes Dent 17:141–146. https://doi.org/10.3290/J.JAD.A33994

    Article  PubMed  Google Scholar 

  107. Van Dijken JWV (2005) Retention of a resin-modified glass ionomer adhesive in non-carious cervical lesions. A 6-year follow-up. J Dent 33:541–547. https://doi.org/10.1016/J.JDENT.2004.11.015

    Article  PubMed  Google Scholar 

  108. Ugurlu M (2020) Bonding of a resin-modified glass ionomer cement to dentin using universal adhesives. Restor Dent Endod 45. https://doi.org/10.5395/RDE.2020.45.E36

  109. Saad A, Inoue G, Nikaido T, Ikeda M, Burrow MF, Tagami J (2017) Microtensile bond strength of resin-modified glass ionomer cement to sound and artificial caries–affected root dentin with different conditioning. Oper Dent 42:626–635. https://doi.org/10.2341/16-375-L

    Article  PubMed  CAS  Google Scholar 

  110. Fritz UB, Finger WJ, Uno S (1996) Resin-modified glass ionomer cements: bonding to enamel and dentin. Dent Mater 12:161–166. https://doi.org/10.1016/S0109-5641(96)80015-7

    Article  PubMed  CAS  Google Scholar 

  111. Coutinho E, Yoshida Y, Inoue S, Fukuda R, Snauwaert J, Nakayama Y, De Munck J, Lambrechts P, Suzuki K, Van Meerbeek B (2007) Gel phase formation at resin-modified glass-ionomer/tooth interfaces. J Dent Res 86:656–661. https://doi.org/10.1177/154405910708600714

    Article  PubMed  CAS  Google Scholar 

  112. Cardoso MV, Delmé KIM, Mine A, Neves ADA, Coutinho E, De Moor RJG, Van Meerbeek B (2010) Towards a better understanding of the adhesion mechanism of resin-modified glass-ionomers by bonding to differently prepared dentin. J Dent 38:921–929. https://doi.org/10.1016/J.JDENT.2010.08.009

    Article  PubMed  CAS  Google Scholar 

  113. Tay FR, Pashley DH (2004) Resin bonding to cervical sclerotic dentin: a review. J Dent 32:173–196. https://doi.org/10.1016/j.jdent.2003.10.009

    Article  PubMed  CAS  Google Scholar 

  114. Van Meerbeek B, Braem M, Lambrechts P, Vanherle G (1994) Morphological characterization of the interface between resin and sclerotic dentine. J Dent 22:141–146. https://doi.org/10.1016/0300-5712(94)90197-X

    Article  PubMed  Google Scholar 

  115. Van Dijken JWV (2000) Clinical evaluation of three adhesive systems in class V non-carious lesions. Dent Mater 16:285–291. https://doi.org/10.1016/S0109-5641(00)00019-1

    Article  PubMed  Google Scholar 

  116. van Dijken JWV (2004) Durability of three simplified adhesive systems in Class V non-carious cervical dentin lesions. Am J Dent 17:27–32

    PubMed  Google Scholar 

  117. Perdigão J (2010) Dentin bonding-variables related to the clinical situation and the substrate treatment. Dent Mater 26. https://doi.org/10.1016/J.DENTAL.2009.11.149

  118. Ozer F, Sengun A, Ozturk B, Say EC, Tagami J (2005) Effect of tooth age on microtensile bond strength of two fluoride-releasing bonding agents. J Adhes Dent 7:289–295

    PubMed  CAS  Google Scholar 

  119. Karakaya S, Unlu N, Say EC, Özer F, Soyman M, Tagami J (2008) Bond strengths of three different dentin adhesive systems to sclerotic dentin. Dent Mater J 27:471–479. https://doi.org/10.4012/DMJ.27.471

    Article  PubMed  Google Scholar 

  120. Burrow MF, Tyas MJ (2012) Comparison of two all-in-one adhesives bonded to non-carious cervical lesions–results at 3 years. Clin Oral Investig 16:1089–1094. https://doi.org/10.1007/S00784-011-0595-Y

    Article  PubMed  Google Scholar 

  121. van Dijken JW (2001) Clinical effectiveness of 12 adhesive systems in class V non-retentive lesions: a 5-year evaluation (abstract 42). J Dent Res 80:1272

  122. Momoi Y, Hirosaki K, Kohno A, McCabe JF (1995) Flexural properties of resin-modified “hybrid” glass-ionomers in comparison with conventional acid-base glass-ionomers. Dent Mater J 14:109–119. https://doi.org/10.4012/dmj.14.109

    Article  PubMed  CAS  Google Scholar 

  123. Khoroushi M, Keshani F (2013) A review of glass-ionomers: from conventional glass-ionomer to bioactive glass-ionomer. Dent Res J (Isfahan) 10:411–420

    PubMed  Google Scholar 

  124. Sidhu SK, Watson TF (1995) Resin-modified glass ionomer materials. A status report for the American Journal of Dentistry. Am J Dent 8:59–67

    PubMed  CAS  Google Scholar 

  125. Shen C, Grimaudo N (1994) Effect of hydration on the biaxial flexural strength of a glass ionomer cement. Dent Mater 10:190–195. https://doi.org/10.1016/0109-5641(94)90031-0

    Article  PubMed  CAS  Google Scholar 

  126. Gladys S, Van Meerbeek B, Braem M, Lambrechts P, Vanherle G (1997) Comparative physico-mechanical characterization of new hybrid restorative materials with conventional glass-ionomer and resin composite restorative materials. J Dent Res 76:883–894. https://doi.org/10.1177/00220345970760041001

    Article  PubMed  CAS  Google Scholar 

  127. Poggio C, Beltrami R, Scribante A, Colombo M, Lombardini M (2014) Effects of dentin surface treatments on shear bond strength of glass-ionomer cements. Ann Stomatol (Roma) 5:15–22

    PubMed  Google Scholar 

  128. Nakanuma K, Hayakawa T, Tomita T, Yamazaki M (1998) Effect of the application of dentin primers and a dentin bonding agent on the adhesion between the resin-modified glass-ionomer cement and dentin. Dent Mater 14:281–286. https://doi.org/10.1016/S0109-5641(98)00040-2

    Article  PubMed  CAS  Google Scholar 

  129. Yap AUJ, Mok BYY (2002) Surface finish of a new hybrid aesthetic restorative material. Oper Dent 27:161–166

    PubMed  CAS  Google Scholar 

  130. Koupis NS, Marks LA, Verbeeck RM, Martens LC (2007) Review: finishing and polishing procedures of (resin-modified) glass ionomers and compomers in paediatric dentistry. Eur Arch Paediatr Dent 8:22–28. https://doi.org/10.1007/BF03262566

    Article  PubMed  CAS  Google Scholar 

  131. Tarasingh P, Sharada Reddy J, Suhasini K, Hemachandrika I (2015) Comparative evaluation of antimicrobial efficacy of resin-modified glass ionomers, compomers and giomers – an invitro study. J Clin Diagn Res 9:CZ85. https://doi.org/10.7860/JCDR/2015/14364.6237

    Article  CAS  Google Scholar 

  132. Swift EJ, Pawlus MA, Vargas MA (1995) Shear bond strengths of resin-modified glass-ionomer restorative materials. Oper Dent 20:138–143

    PubMed  Google Scholar 

  133. Nicholson JW, Croll TP (1997) Glass-ionomer cements in restorative dentistry. Quintessence Int 28:705–714

    PubMed  CAS  Google Scholar 

  134. Sidhu SK (2010) Clinical evaluations of resin-modified glass-ionomer restorations. Dent Mater 26:7–12. https://doi.org/10.1016/J.DENTAL.2009.08.015

    Article  PubMed  CAS  Google Scholar 

  135. Folwaczny M, Loher C, Mehl A, Kunzelmann KH, Hinkel R (2000) Tooth-colored filling materials for the restoration of cervical lesions: a 24-month follow-up study. Oper Dent 25:251–258

    PubMed  CAS  Google Scholar 

  136. van Dijken JWV, Pallesen U (2008) Long-term dentin retention of etch-and-rinse and self-etch adhesives and a resin-modified glass ionomer cement in non-carious cervical lesions. Dent Mater 24:915–922. https://doi.org/10.1016/J.DENTAL.2007.11.008

    Article  PubMed  Google Scholar 

  137. Peumans M, Kanumilli P, De Munck J, Van Landuyt K, Lambrechts P, Van Meerbeek B (2005) Clinical effectiveness of contemporary adhesives: a systematic review of current clinical trials. Dent Mater 21:864–881. https://doi.org/10.1016/J.DENTAL.2005.02.003

    Article  PubMed  CAS  Google Scholar 

  138. Tyas MJ (1995) The Class V lesion–aetiology and restoration. Aust Dent J 40:167–170. https://doi.org/10.1111/J.1834-7819.1995.TB05631.X

    Article  PubMed  CAS  Google Scholar 

  139. Boing TF, de Geus JL, Wambier LM, Loguercio AD, Reis A, Gomes OMM (2018) Are glass-ionomer cement restorations in cervical lesions more long-lasting than resin-based composite resins? A systematic review and meta-analysis. J Adhes Dent 20. https://doi.org/10.3290/J.JAD.A41310

  140. Peumans M, Politano G, Van Meerbeek B (2020) Treatment of noncarious cervical lesions: when, why, and how. Int J Esthet Dent 15:16–42

    PubMed  Google Scholar 

  141. Wilson NHF, Gordan VV, Brunton PA, Wilson MA, Crisp RJ, Mjör IA (2006) Two-centre evaluation of a resin composite/ self-etching restorative system: three-year findings. J Adhes Dent 8:47–51

    PubMed  Google Scholar 

  142. Sunico MC, Shinkai K, Katoh Y (2005) Two-year clinical performance of occlusal and cervical giomer restorations. Oper Dent 30:282–289

    PubMed  Google Scholar 

  143. Brackett WW, Gunnin TD, Gilpatrick RO, Browning WD (1998) Microleakage of Class V compomer and light-cured glass ionomer restorations. J Prosthet Dent 79:261–263. https://doi.org/10.1016/S0022-3913(98)70234-3

    Article  PubMed  CAS  Google Scholar 

  144. Toledano M, Osorio E, Osorio R, García-Godoy F (1999) Microleakage of class V resin-modified glass ionomer and compomer restorations. J Prosthet Dent 81:610–615. https://doi.org/10.1016/S0022-3913(99)70217-9

    Article  PubMed  CAS  Google Scholar 

  145. Iwami Y, Shimizu A, Hayashi M, Takeshige F, Ebisu S (2005) Three-dimensional evaluation of gap formation of cervical restorations. J Dent 33:325–333. https://doi.org/10.1016/J.JDENT.2004.10.001

    Article  PubMed  Google Scholar 

  146. Chitnis D, Dunn WJ, Gonzales DA (2006) Comparison of in-vitro bond strengths between resin-modified glass ionomer, polyacid-modified composite resin, and giomer adhesive systems. Am J Orthod Dentofacial Orthop 129:330.e11-330.e16. https://doi.org/10.1016/J.AJODO.2005.11.011

    Article  PubMed  Google Scholar 

  147. Priyadarshini BI, Jayaprakash T, Nagesh B, Sunil CR, Sujana V, Deepa VL (2017) One-year comparative evaluation of Ketac Nano with resin-modified glass ionomer cement and Giomer in noncarious cervical lesions: a randomized clinical trial. J Conserv Dent 20:204–209. https://doi.org/10.4103/0972-0707.218305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Jyothi KN, Annapurna S, Anil Kumar S, Venugopal P, Jayashankara CM (2011) Clinical evaluation of giomer- and resin-modified glass ionomer cement in class V noncarious cervical lesions: an in vivo study. J Conserv Dent 14:409. https://doi.org/10.4103/0972-0707.87214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. (2007) Restoration of teeth (simple restorations) and preventative dentistry. Restorative Dent 73–87. https://doi.org/10.1016/B978-0-443-10246-2.50011-3

  150. Donly KJ, Sasa IS (2019) Dental materials. Pediatr Dent 293–303. https://doi.org/10.1016/B978-0-323-60826-8.00021-3

  151. Nicholson JW (2007) Polyacid-modified composite resins (. Dent Mater 23:615–622. https://doi.org/10.1016/J.DENTAL.2006.05.002

    Article  PubMed  ADS  CAS  Google Scholar 

  152. Ermiş RB (2002) Two-year clinical evaluation of four polyacid-modified resin composites and a resin-modified glass-ionomer cement in Class V lesions. Quintessence Int 33:542–548

    PubMed  Google Scholar 

  153. Hussainy S, Nasim I, Thomas T, Ranjan M (2018) Clinical performance of resin-modified glass ionomer cement, flowable composite, and polyacid-modified resin composite in noncarious cervical lesions: One-year follow-up. J Conserv Dent 21:510. https://doi.org/10.4103/JCD.JCD_51_18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Chinelatti MA, Ramos RP, Chimello DT, Palma-Dibb RG (2004) Clinical performance of a resin-modified glass-ionomer and two polyacid-modified resin composites in cervical lesions restorations: 1-year follow-up. J Oral Rehabil 31:251–257. https://doi.org/10.1046/J.0305-182X.2003.01221.X

    Article  PubMed  CAS  Google Scholar 

  155. Loguercio AD, Reis A, Barbosa AN, Roulet JF (2003) Five-year double-blind randomized clinical evaluation of a resin-modified glass ionomer and a polyacid-modified resin in noncarious cervical lesions. J Adhes Dent 5:323–332

    PubMed  CAS  Google Scholar 

  156. Peumans M, De Munck J, Mine A, Van Meerbeek B (2014) Clinical effectiveness of contemporary adhesives for the restoration of non-carious cervical lesions. A systematic review. Dent Mater 30:1089–1103. https://doi.org/10.1016/J.DENTAL.2014.07.007

    Article  PubMed  CAS  Google Scholar 

  157. Pecie R, Krejci I, García-Godoy F, Bortolotto T (2011) Noncarious cervical lesions (NCCL)–a clinical concept based on the literature review. Part 2: restoration. Am J Dent 24:183–192

    PubMed  Google Scholar 

  158. Bollen CM, Lambrechts P, Quirynen M (1997) Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater 13:258–269. https://doi.org/10.1016/S0109-5641(97)80038-3

    Article  PubMed  CAS  Google Scholar 

  159. Madhyastha PS, Hegde S, Srikant N, Kotian R, Iyer SS (2017) Effect of finishing/polishing techniques and time on surface roughness of esthetic restorative materials. Dent Res J (Isfahan) 14:326–330. https://doi.org/10.4103/1735-3327.215962

    Article  PubMed  Google Scholar 

  160. Özgünaltay G, Yazici AR, Görücü J (2003) Effect of finishing and polishing procedures on the surface roughness of new tooth-coloured restoratives. J Oral Rehabil 30:218–224. https://doi.org/10.1046/J.1365-2842.2003.01022.X

    Article  PubMed  Google Scholar 

  161. McKinney JE, Antonucci JM, Rupp NW (1987) Wear and microhardness of glass-ionomer cements. 66:1134–1139. https://doi.org/10.1177/00220345870660060801

  162. Ichim IP, Schmidlin PR, Li Q, Kieser JA, Swain MV (2007) Restoration of non-carious cervical lesions Part II. Restorative material selection to minimise fracture. Dent Mater 23:1562–1569. https://doi.org/10.1016/J.DENTAL.2007.02.002

    Article  PubMed  CAS  Google Scholar 

  163. Bezerra IM, Brito ACM, de Sousa SA, Santiago BM, Cavalcanti YW, de Almeida L de FD (2020) Glass ionomer cements compared with composite resin in restoration of noncarious cervical lesions: a systematic review and meta-analysis. Heliyon 6. https://doi.org/10.1016/J.HELIYON.2020.E03969

  164. Kampanas NS, Antoniadou M (2018) Glass ionomer cements for the restoration of non-carious cervical lesions in the geriatric patient. J Funct Biomater 9. https://doi.org/10.3390/JFB9030042

  165. Gryst MEI, Mount GJ (1999) The use of glass ionomer in special needs patients. Aust Dent J 44:268–274. https://doi.org/10.1111/J.1834-7819.1999.TB00231.X

    Article  PubMed  CAS  Google Scholar 

  166. Naganuma Y, Takahashi M, Takada Y, Hoshi K, Kitaoka A, Takahashi A, Sasaki K (2022) Usefulness of conventional glass ionomer cements in an environment of insufficient moisture exclusion. J Oral Sci 64:242–246. https://doi.org/10.2334/JOSNUSD.22-0012

    Article  PubMed  CAS  Google Scholar 

  167. Smales RJ, Yip HK (2000) The atraumatic restorative treatment (ART) approach for primary teeth: review of literature. Pediatr Dent 22:294–298

    PubMed  CAS  Google Scholar 

  168. Cefaly DFG, Tapety CMC, Mondelli RFL, Lauris JRP, Phantumvanit P, Navarro MFL (2006) Three-year evaluation of the ART approach in class III and V restorations in permanent anterior teeth. Caries Res 40:389–392. https://doi.org/10.1159/000094283

    Article  PubMed  CAS  Google Scholar 

  169. Hu JY, Chen XC, Li YQ, Smales RJ, Yip KH (2005) Radiation-induced root surface caries restored with glass-ionomer cement placed in conventional and ART cavity preparations: results at two years. Aust Dent J 50:186–190. https://doi.org/10.1111/J.1834-7819.2005.TB00359.X

    Article  PubMed  CAS  Google Scholar 

  170. Francisconi LF, Scaffa PMC, dos Santos Paes de Barros VR, Coutinho M, Francisconi PAS (2009) Glass ionomer cements and their role in the restoration of non-carious cervical lesions. J Appl Oral Sci 17:364. https://doi.org/10.1590/S1678-77572009000500003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Chan AW, Tetzlaff JM, Gøtzsche PC, Altman DG, Mann H, Berlin JA, Dickersin K, Hróbjartsson A, Schulz KF, Parulekar WR, Krleza-Jeric K, Laupacis A, Moher D (2013) SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ 346. https://doi.org/10.1136/bmj.e7586

  172. Schulz KF, Altman DG, Moher D (2010) CONSORT 2010 statement: updated guidelines for reporting parallel group randomized trials. BMJ 340:698–702. https://doi.org/10.1136/BMJ.C332

    Article  Google Scholar 

Download references

Funding

This study was funded by São Paulo Research Foundation (FAPESP; grants 2019/14729–9 and 2020/15561–1).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: T.M.F.C. and E.B. Methodology: J.B.F., S.M.C. and T.M.F.C. Statistical analysis: T.M.F.C and E.B. Writing—original draft: J.B.F., S.M.C., M.S.S, G.R.B., E.B. and T.M.F.C. Reviewing the manuscript: T.M.F.C. and M.S.S.

Corresponding author

Correspondence to Taciana Marco Ferraz Caneppele.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, J.B., Contreras, S.M., da Silva Spinola, M. et al. Do bioactive materials show greater retention rates in restoring permanent teeth than non-bioactive materials? A systematic review and network meta-analysis of randomized controlled trials. Clin Oral Invest 28, 44 (2024). https://doi.org/10.1007/s00784-023-05414-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00784-023-05414-3

Keywords

Navigation