Skip to main content

Advertisement

Log in

Influence of sodium hypochlorite on cyclic fatigue resistance of nickel–titanium instruments: A systematic review and meta-analysis of in vitro studies

  • Review
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

This systematic review/meta-analysis investigated the influence of NaOCl on cyclic fatigue resistance of endodontic NiTi instruments.

Materials and methods

A systematic search until July 2022 in PubMed/MEDLINE, Embase, Scopus, Web of Science, SciELO, Cochrane Library, and grey literature was conducted. According to the PECOS strategy, only in vitro studies evaluating the effects of NaOCl on the cyclic fatigue resistance of NiTi instruments were eligible. Cyclic fatigue resistance was the primary outcome. A modified Joanna Briggs Institute’s Checklist was used for risk of bias assessment.

Results

Of the 2,445 records screened, 37 studies were included. Most studies used simulated canals made of stainless-steel block with severe to moderate curvatures. NaOCl concentration varied from 1–6%, mainly at 37 °C. Regarding fatigue resistance, 23 studies using 1.2% to 6% NaOCl showed a reduction in the resistance compared to the control groups, especially when pre-heated. Four meta-analyses were performed according to the tested NiTi systems. The meta-analyses indicated that the PTU F2 files had higher reduction of fatigue resistance after exposure to 5.25% NaOCl; no differences between NaOCl and no immersion were observed for Reciproc R25, WaveOne 25.08, and WaveOne Gold Primary files. Included studies had low risk of bias.

Conclusion

NaOCl appears to reduce cyclic fatigue resistance of certain NiTi files, especially when they are pre-heated, particularly in conventional NiTi files compared to some heat-treated instruments. It is possible that the temperature of the solution may have a greater influence on resistance than NaOCl itself. Important to note that an overall tendency toward no significant influence was observed among various systems.

Clinical relevance

Precautions are necessary when a pre-heated high-concentration NaOCl is used to enhance its properties during root canal preparation, mainly using conventional wire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Cai JJ, Tang XN, Ge JY (2017) Effect of irrigation on surface roughness and fatigue resistance of controlled memory wire nickel-titanium instruments. Int Endod J 50:718–724. https://doi.org/10.1111/iej.12676

    Article  PubMed  Google Scholar 

  2. Gavini G, Santos MD, Caldeira CL, Machado MEL, Freire LG, Iglecias EF, Peters OA, Candeiro GTM (2018) Nickel-titanium instruments in endodontics: a concise review of the state of the art. Braz Oral Res 32:e67. https://doi.org/10.1590/1807-3107bor-2018.vol32.0067

    Article  PubMed  Google Scholar 

  3. Wang NN, Ge JY, Xie SJ, Chen G, Zhu M (2014) Analysis of Mtwo rotary instrument separation during endodontic therapy: a retrospective clinical study. Cell Biochem Biophys 70:1091–1095. https://doi.org/10.1007/s12013-014-0027-0

    Article  PubMed  Google Scholar 

  4. Erik CE, Özyürek T (2019) Effects of etidronate, NaOCl, EDTA irrigation solutions and their combinations on cyclic fatigue resistance of nickel-titanium single-file rotary and reciprocating instruments at body temperature. Odontology 107:190–195. https://doi.org/10.1007/s10266-018-0388-8

    Article  PubMed  Google Scholar 

  5. Zanza A, D’Angelo M, Reda R, Gambarini G, Testarelli L, Di Nardo D (2021) An update on nickel-titanium rotary instruments in endodontics: mechanical characteristics, testing and future perspective-an overview. Bioengineering 8:218. https://doi.org/10.3390/bioengineering8120218

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gambarini G, Grande NM, Plotino G, Somma F, Garala M, De Luca M, Testarelli L (2008) Fatigue resistance of engine-driven rotary nickel-titanium instruments produced by new manufacturing methods. J Endod 34:1003–1005. https://doi.org/10.1016/j.joen.2008.05.007

    Article  PubMed  Google Scholar 

  7. Martín B, Zelada G, Varela P, Bahillo JG, Magán F, Ahn S, Rodríguez C (2003) Factors influencing the fracture of nickel-titanium rotary instruments. J Endod 36:262–266. https://doi.org/10.1046/j.1365-2591.2003.00630.x

    Article  Google Scholar 

  8. Berutti E, Angelini E, Rigolone M, Migliaretti G, Pasqualini D (2006) Influence of sodium hypochlorite on fracture properties and corrosion of ProTaper rotary instruments. Int Endod J 39:693–699. https://doi.org/10.1111/j.1365-2591.2006.01134.x

    Article  PubMed  Google Scholar 

  9. Plotino G, Grande NM, Cordaro M, Testarelli L, Gambarini G (2009) A review of cyclic fatigue testing of nickel-titanium rotary instruments. J Endod 35:1469–1476. https://doi.org/10.1016/j.joen.2009.06.015

    Article  PubMed  Google Scholar 

  10. Zehnder M (2006) Root canal irrigants. J Endod 32:389–398. https://doi.org/10.1016/j.joen.2005.09.014

    Article  PubMed  Google Scholar 

  11. Bonaccorso A, Tripi TR, Rondelli G, Condorelli GG, Cantatore G, Schäfer E (2008) Pitting corrosion resistance of nickel–titanium rotary instruments with different surface treatments in seventeen percent ethylenediaminetetraacetic acid and sodium chloride solutions. J Endod 34:208–211. https://doi.org/10.1016/j.joen.2007.11.012

    Article  PubMed  Google Scholar 

  12. de Castro MR, Bahia MG, Buono VT (2006) The effect of sodium hypochlorite on the surface characteristics and fatigue resistance of ProFile nickel-titanium instruments. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102:99–105. https://doi.org/10.1016/j.tripleo.2006.02.018

    Article  Google Scholar 

  13. Darabara M, Bourithis L, Zinelis S, Papadimitriou G (2004) Susceptibility to localized corrosion of stainless steel and NiTi endodontic instruments in irrigating solutions. Int Endod J 37:705–710. https://doi.org/10.1111/j.1365-2591.2004.00866.x

    Article  PubMed  Google Scholar 

  14. Bahia MG, Buono VT (2005) Decrease in the fatigue resistance of nickel-titanium rotary instruments after clinical use in curved root canals. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 100:249–255. https://doi.org/10.1016/j.tripleo.2004.10.013

    Article  PubMed  Google Scholar 

  15. Ametrano G, D’Antò V, Di Caprio MP, Simeone M, Rengo S, Spagnuolo G (2011) Effects of sodium hypochlorite and ethylenediaminetetraacetic acid on rotary nickel-titanium instruments evaluated using atomic force microscopy. Int Endod J 44:203–209. https://doi.org/10.1111/j.1365-2591.2010.01799.x

    Article  PubMed  Google Scholar 

  16. Fayyad DM, Mahran AH (2014) Atomic force microscopic evaluation of nanostructure alterations of rotary NiTi instruments after immersion in irrigating solutions. Int Endod J 47:567–573. https://doi.org/10.1111/iej.12189

    Article  PubMed  Google Scholar 

  17. Topuz O, Aydin C, Uzun O, Inan U, Alacam T, Tunca YM (2008) Structural effects of sodium hypochlorite solution on RaCe rotary nickel-titanium instruments: an atomic force microscopy study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105:661–665. https://doi.org/10.1016/j.tripleo.2007.11.006

    Article  PubMed  Google Scholar 

  18. Alfawaz H, Alqedairi A, Alsharekh H, Almuzaini E, Alzahrani S, Jamleh A (2018) Effects of sodium hypochlorite concentration and temperature on the cyclic fatigue resistance of heat-treated nickel-titanium rotary instruments. J Endod 44:1563–1566. https://doi.org/10.1016/j.joen.2018.07.009

    Article  PubMed  Google Scholar 

  19. Uslu G, Özyürek T, Yılmaz K, Plotino G (2018) Effect of dynamic immersion in sodium hypochlorite and EDTA solutions on cyclic fatigue resistance of WaveOne and WaveOne Gold reciprocating nickel-titanium files. J Endod 44:834–837. https://doi.org/10.1016/j.joen.2017.11.014

    Article  PubMed  Google Scholar 

  20. Silva EJNL, Zanon M, Hecksher F, Belladonna FG, de Vasconcelos RA, Fidalgo TKDS (2020) Influence of autoclave sterilization procedures on the cyclic fatigue resistance of heat-treated nickel-titanium instruments: a systematic review. Restor Dent Endod 45:e25. https://doi.org/10.5395/rde.2020.45.e25

    Article  PubMed  PubMed Central  Google Scholar 

  21. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Moher D (2021) Updating guidance for reporting systematic reviews: development of the PRISMA 2020 statement. J Clin Epidemiol 134:103–112. https://doi.org/10.1016/j.jclinepi.2021.02.003

    Article  PubMed  Google Scholar 

  22. Haddaway NR, Collins AM, Coughlin D, Kirk S (2015) The role of Google Scholar in evidence reviews and its applicability to grey literature searching. PLoS One 10:0138237. https://doi.org/10.1371/journal.pone.0138237

    Article  Google Scholar 

  23. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  PubMed  Google Scholar 

  24. Higgins JPT, Green S (2011) Cochrane handbook for systematic reviews of interventions version 5.1.0 [updated March 2011]. Cochrane Collab

  25. Brockwell SE, Gordon IR (2001) A comparison of statistical methods for meta-analysis. Stat Med 20:825–840. https://doi.org/10.1002/sim.650

    Article  PubMed  Google Scholar 

  26. Kontopantelis E, Reeves D (2012) Performance of statistical methods for meta-analysis when true study effects are non-normally distributed: a simulation study. Stat Methods Med Res 21:409–426. https://doi.org/10.1177/0962280210392008

    Article  PubMed  Google Scholar 

  27. Yaylali IE, Kececi AD, Kaya BU (2015) Ultrasonically activated irrigation to remove calcium hydroxide from apical third of human root canal system: a systematic review of in vitro studies. J Endod 41:1589–1599. https://doi.org/10.1016/j.joen.2015.06.006

    Article  PubMed  Google Scholar 

  28. Dos Reis-Prado AH, Abreu LG, Tavares WLF et al (2021) Comparison between immediate and delayed post space preparations: a systematic review and meta-analysis. Clin Oral Investig 25:417–440. https://doi.org/10.1007/s00784-020-03690-x

    Article  PubMed  Google Scholar 

  29. Simões LP, Dos Reis-Prado AH, Bueno CRE et al (2022) Effectiveness and safety of rotary and reciprocating kinematics for retreatment of curved root canals: a systematic review of in vitro studies. Restor Dent Endod 47:e22. https://doi.org/10.5395/rde.2022.47.e22

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yared GM, Dagher FEB, Machtou P (1999) Cyclic fatigue of ProFile rotary instruments after simulated clinical use. Int Endod J 3:115–119. https://doi.org/10.1046/j.1365-2591.1999.00201.x

    Article  Google Scholar 

  31. Yared GM, Dagher FEB, Machtou P (2000) Cyclic fatigue of ProFile rotary instruments after clinical use. Int Endod J 33:204–207. https://doi.org/10.1046/j.1365-2591.1999.00296.x

    Article  PubMed  Google Scholar 

  32. O’Hoy PY, Messer HH, Palamara JE (2003) The effect of cleaning procedures on fracture properties and corrosion of NiTi files. Int Endod J 36:724–732. https://doi.org/10.1046/j.1365-2591.2003.00709.x

    Article  PubMed  Google Scholar 

  33. Peters OA, Roehlike JO, Baumann MA (2007) Effect of immersion in sodium hypochlorite on torque and fatigue resistance of nickel-titanium instruments. J Endod 33:589–593. https://doi.org/10.1016/j.joen.2007.01.007

    Article  PubMed  Google Scholar 

  34. Cheung GSP, Shen Y, Darvell BW (2007) Effect of environment on low-cycle fatigue of a nickel–titanium instrument. J Endod 33:1433–1437. https://doi.org/10.1016/j.joen.2007.08.007

    Article  PubMed  Google Scholar 

  35. Pedullà E, Grande NM, Plotino G et al (2011) Cyclic fatigue resistance of three different nickel-titanium instruments after immersion in sodium hypochlorite. J Endod 37:1139–1142. https://doi.org/10.1016/j.joen.2011.04.008

    Article  PubMed  Google Scholar 

  36. Shen Y, Qian W, Abtin H, Gao Y, Haapasalo M (2012) Effect of environment on fatigue failure of controlled memory wire nickel-titanium rotary instruments. J Endod 38:376–380. https://doi.org/10.1016/j.joen.2011.12.002

    Article  PubMed  Google Scholar 

  37. Bulem UK, Kececi AD, Guldas HE (2013) Experimental evaluation of cyclic fatigue resistance of four different nickel-titanium instruments after immersion in sodium hypochlorite and/or sterilization. J Appl Oral Sci 2:505–510. https://doi.org/10.1590/1679-775720130083

    Article  Google Scholar 

  38. Pedullà E, Grande NM, Plotino G, Palermo F, Gambarini G, Rapisarda E (2013) Cyclic fatigue resistance of two reciprocating nickel–titanium instruments after immersion in sodium hypochlorite. Int Endod J 46:155–159. https://doi.org/10.1111/j.1365-2591.2012.02100.x

    Article  PubMed  Google Scholar 

  39. Pedullà E, Franciosi G, Ounsi HF, Tricarico M, Rapisarda E, Grandini S (2014) Cyclic fatigue resistance of nickel-titanium instruments after immersion in irrigant solutions with or without surfactants. J Endod 40:1245–1249. https://doi.org/10.1016/j.joen.2014.02.005

    Article  PubMed  Google Scholar 

  40. Topçuoğlu HS, Pala K, Aktı A, Düzgün S, Topçuoğlu G (2016) Cyclic fatigue resistance of D-RaCe, ProTaper, and Mtwo nickel–titanium retreatment instruments after immersion in sodium hypochlorite. Clin Oral Investig 20:1175–1179. https://doi.org/10.1007/s00784-015-1611-4

    Article  PubMed  Google Scholar 

  41. Huang X, Shen Y, Wei X, Haapasalo M (2017) Fatigue resistance of nickel-titanium instruments exposed to high-concentration hypochlorite. J Endod 43:1847–1851. https://doi.org/10.1016/j.joen.2017.06.033

    Article  PubMed  Google Scholar 

  42. Elnaghy AM, Elsaka SE (2017) Effect of sodium hypochlorite and saline on cyclic fatigue resistance of WaveOne Gold and Reciproc reciprocating instruments. Int Endod J 50:991–998. https://doi.org/10.1111/iej.12712

    Article  PubMed  Google Scholar 

  43. Champa C, Divya V, Srirekha A, Karale R, Shetty A, Sadashiva P (2017) An analysis of cyclic fatigue resistance of reciprocating instruments in different canal curvatures after immersion in sodium hypochlorite and autoclaving: an in vitro study. J Conserv Dent 20:194–198. https://doi.org/10.4103/0972-0707.218307

    Article  PubMed  PubMed Central  Google Scholar 

  44. Muhammad SA, Al-Huwaizi H (2018) Evaluation of the cyclic fatigue of WaveOne Gold and Reciproc blue using different irrigating medium. IJMRHS 7:27–31

    Google Scholar 

  45. Pedullà E, Benites A, La Rosa GM, Plotino G, Grande NM, Rapisarda E, Generali L (2018) Cyclic fatigue resistance of heat-treated nickel-titanium instruments after immersion in sodium hypochlorite and/or sterilization. J Endod 44:648–653. https://doi.org/10.1016/j.joen.2017.12.011

    Article  PubMed  Google Scholar 

  46. Algahtani F, Huang X, Haapasalo M, Wang Z, Hieawy A, Zhang D, Aleksejuniene J, Shen Y (2019) Fatigue resistance of ProTaper Gold exposed to high-concentration sodium hypochlorite in double curvature artificial canal. Bioact Mater 4:245–248. https://doi.org/10.1016/j.bioactmat.2019.07.003

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ertuğrul İF (2019) Effect of sodium hypochlorite on the cyclic fatigue resistance: a scanning electron microscopy evaluation. Microsc Res Tech 82:2089–2094. https://doi.org/10.1002/jemt.23381

    Article  PubMed  Google Scholar 

  48. Ertuğrul İF, Orhan EO (2019) Cyclic fatigue and energy-dispersive X-ray spectroscopy examination of the novel ROTATE instrument. Microsc Res Tech 82:2042–2048. https://doi.org/10.1002/jemt.23374

    Article  PubMed  Google Scholar 

  49. Keles A, Uzunoglu Ozyurek E, Uyanik MO, Nagas E (2019) Effect of temperature of sodium hypochlorite on cyclic fatigue resistance of heat-treated reciprocating files. J Endod 45:205–208. https://doi.org/10.1016/j.joen.2018.11.003

    Article  PubMed  Google Scholar 

  50. Palma PJ, Messias A, Cerqueira AR, Tavares LD, Caramelo F, Roseiro L, Santos JM (2019) Cyclic fatigue resistance of three rotary file systems in a dynamic model after immersion in sodium hypochlorite. Odontology 107:324–332. https://doi.org/10.1007/s10266-018-0401-2

    Article  PubMed  Google Scholar 

  51. Abuhulaibah HF, AbuMostafa A (2020) Resistance to cyclic fatigue of nickel-titanium files immersed in sodium hypochlorite at body temperature. Int J Dent 2020:1–5. https://doi.org/10.1155/2020/8830163

  52. Jaber ZA, Al-Hmedat SJA-Z, Hameed SA, Al-Nasrawi SJH, Aljdaimi AI, Haider J (2020) Effect of autoclave sterilization and heat activated sodium hypochlorite irrigation on the performance of nickel-titanium rotary files against cyclic fatigue. Adv Mater Process Technol 8:1071–1083. https://doi.org/10.1080/2374068X.2020.1848309

  53. Mohammed SF, Shaalan LA (2020) Effect of 4 different irrigation media on cyclic fatigue of 2 different files in double curved simulated canal. J Res Med Dent Sci 8:1–5

    Google Scholar 

  54. Muhamad A, Alafif H (2020) The effect of use different concentrations of sodium hypochlorite on cyclic fatigue in Reciproc files (in vitro study). Int J Oral Health Dent 6:8–11

    Article  Google Scholar 

  55. Nogueira D, Bueno CEDS, Kato AS, Martin AS, Pelegrine RA, Limoeiro AGDS, Rocha DGP, Fontana CE (2020) Effect of immersion in sodium hypochlorite on the cyclic fatigue resistance of three rotary instruments. J Conserv Dent 23:554–557. https://doi.org/10.4103/JCD.JCD_117_19

    Article  PubMed  Google Scholar 

  56. Pedullà E, La Rosa GRM, Albani MS, Isola G, Özyürek T, Generali L (2020) Effects of simultaneous liquid or gel sodium hypochlorite irrigation on the cyclic fatigue of two single-file nickel-titanium instruments. Appl Sci 2020:10–6666. https://doi.org/10.3390/app10196666

    Article  Google Scholar 

  57. Arican B, Atav Ateş A (2021) Cyclic fatigue resistance of Biorace nickel-titanium file with variable taper after immersion in sodium hypochloride. Bezmialem Sci 9:25–8. https://doi.org/10.14235/bas.galenos.2020.3918

    Article  Google Scholar 

  58. Kermeoglu F, Abduljalil M (2021) Impacts of NaOCl and Irritrol irrigation solutions with/without autoclave sterilisation on the cyclic fatigue resistance of different nickel-titanium files. Aust Dent J In press. https://doi.org/10.1111/aej.12580

    Article  Google Scholar 

  59. Medeiros-Junior E, Limoeiro AG, Tanomaro A et al (2021) Influence of sodium hypochlorite and chlorexidine on the dynamic cyclic fatigue resistance of XP-Endo Finisher instruments. G Ital Endod 35:13–19. https://doi.org/10.32067/GIE.2021.35.01.06

    Article  Google Scholar 

  60. Tanomaru AA, Limoeiro AG, de Jesus SA et al (2021) Influence of sodium hypochlorite and chlorhexidine on the dynamic cyclic fatigue resistance of XP Endo Shaper instruments. Eur J Dent In press. https://doi.org/10.1055/s-0041-1735934

    Article  Google Scholar 

  61. Sterne JA, Gavaghan D, Egger M (2000) Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature. J Clin Epidemiol 53:1119–1129. https://doi.org/10.1016/s0895-4356(00)00242-0

    Article  PubMed  Google Scholar 

  62. Parashos P, Gordon I, Messer HH (2004) Factors influencing defects of rotary nickel-titanium endodontic instruments after clinical use. J Endod 30:722–725. https://doi.org/10.1097/01.don.0000129963.42882.c9

    Article  PubMed  Google Scholar 

  63. Boutsioukis C, Arias-Moliz MT (2022) Present status and future directions - irrigants and irrigation methods. Int Endod J 55:588–612. https://doi.org/10.1111/iej.13739

    Article  PubMed  PubMed Central  Google Scholar 

  64. Estrela C, Bueno MR, Sousa-Neto MD, Pécora JD (2008) Method for determination of root curvature radius using cone-beam computed tomography images. Braz Dent J 19:114–118. https://doi.org/10.1590/s0103-64402008000200005

    Article  PubMed  Google Scholar 

  65. de Vasconcelos RA, Murphy S, Carvalho CA, Govindjee RG, Govindjee S, Peters OA (2016) Evidence for reduced fatigue resistance of contemporary rotary instruments exposed to body temperature. J Endod 42:782–787. https://doi.org/10.1016/j.joen.2016.01.025

    Article  PubMed  Google Scholar 

  66. Schäfer E, Bürklein S, Donnermeyer D (2022) A critical analysis of research methods and experimental models to study the physical properties of NiTi instruments and their fracture characteristics. Int Endod J 55:72–94. https://doi.org/10.1111/iej.13673

    Article  PubMed  Google Scholar 

  67. Martins JNR, Martins RF, Braz Fernandes FM, Silva EJNL (2022) What meaningful information are the instruments mechanical testing giving us? A comprehensive review. J Endod 48:985–1004. https://doi.org/10.1016/j.joen.2022.05.007

    Article  PubMed  Google Scholar 

  68. de Hemptinne F, Slaus G, Vandendael M, Jacquet W, De Moor RJ, Bottenberg P (2015) In vivo intracanal temperature evolution during endodontic treatment after the injection of room temperature or preheated sodium hypochlorite. J Endod 41:1112–1115. https://doi.org/10.1016/j.joen.2015.02.011

    Article  PubMed  Google Scholar 

  69. Ferreira F, Adeodato C, Barbosa I, Aboud L, Scelza P, Zaccaro Scelza M (2017) Movement kinematics and cyclic fatigue of NiTi rotary instruments: a systematic review. Int Endod J 50:143–152. https://doi.org/10.1111/iej.12613

    Article  PubMed  Google Scholar 

  70. Hammel C, Pandis N, Pieper D, Faggion CM Jr (2022) Methodological assessment of systematic reviews of in-vitro dental studies. BMC Med Res Methodol 22:110. https://doi.org/10.1186/s12874-022-01575-z

    Article  PubMed  PubMed Central  Google Scholar 

  71. Nagendrababu V, Abbott PV, Boutsioukis C et al (2022) Methodological quality assessment criteria for the evaluation of laboratory-based studies included in systematic reviews within the specialty of endodontology: a development protocol. Int Endod J 55:326–333. https://doi.org/10.1111/iej.13682

    Article  PubMed  Google Scholar 

  72. Kicinski M, Springate DA, Kontopantelis E (2015) Publication bias in meta-analyses from the Cochrane Database of Systematic Reviews. Stat Med 34:2781–2793. https://doi.org/10.1002/sim.6525

    Article  PubMed  Google Scholar 

  73. Lin L (2018) Bias caused by sampling error in meta-analysis with small sample sizes. PLoS One 13:e0204056. https://doi.org/10.1371/journal.pone.0204056

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pereira ES, Gomes RO, Leroy AM, Singh R, Peters OA, Bahia MG, Buono VT (2013) Mechanical behavior of M-Wire and conventional NiTi wire used to manufacture rotary endodontic instruments. Dent Mater 29:318–324. https://doi.org/10.1016/j.dental.2013.10.004

    Article  Google Scholar 

Download references

Funding

This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES) – 88887.649870/2021–00.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Francine Benetti, Lucas Guimarães Abreu, and Alexandre Henrique dos Reis-Prado; study selection: Lara Cancella de Arantes, Sabrina de Castro Oliveira, and Alexandre Henrique dos Reis-Prado; data collection: Lara Cancella de Arantes, Kiani dos Santos De Paula, and Alexandre Henrique dos Reis-Prado; quality assessment: Alexandre Henrique dos Reis-Prado, Sabrina de Castro Oliveira, and Lucas Guimarães Abreu; methodology: Francine Benetti, Alexandre Henrique dos Reis-Prado, Kiani dos Santos De Paula, and Juliana Goto; project administration: Francine Benetti, Alexandre Henrique dos Reis-Prado, Kiani dos Santos De Paula, and Juliana Goto; resources: Francine Benetti and Ana Cecília Diniz Viana; supervision: Francine Benetti, Lucas Guimarães Abreu, and Ana Cecília Diniz Viana; validation: Francine Benetti and Ana Cecília Diniz Viana; visualization: Francine Benetti, Lucas Guimarães Abreu, and Ana Cecília Diniz Viana; writing—original draft: Alexandre Henrique dos Reis-Prado, Lara Cancella de Arantes, Sabrina de Castro Oliveira, and Juliana Goto; writing—review and editing: Francine Benetti, Lucas Guimarães Abreu, and Ana Cecília Diniz Viana. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Alexandre Henrique dos Reis-Prado.

Ethics declarations

Ethical approval

Not applicable.

Informed consent

Not applicable.

Conflict of interest

The authors declare no competing interests.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 31 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Reis-Prado, A.H., Abreu, L.G., de Arantes, L.C. et al. Influence of sodium hypochlorite on cyclic fatigue resistance of nickel–titanium instruments: A systematic review and meta-analysis of in vitro studies. Clin Oral Invest 27, 6291–6319 (2023). https://doi.org/10.1007/s00784-023-05243-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-023-05243-4

Keywords

Navigation