Skip to main content

Advertisement

Log in

Tooth ultrastructure changes induced by a nonsense mutation in the FAM83H gene: insights into the diversity of amelogenesis imperfecta

  • Research
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The current research on single-nucleotide polymorphism (SNP) mutation sites at different positions of the FAM83H gene and their phenotypic changes leading to amelogenesis imperfecta (AI) is inconsistent. We identified a previously reported heterozygous nonsense mutation c.1192C>T (p.Q398*) in the FAM83H gene and conducted a comprehensive analysis of the dental ultrastructure and chemical composition changes induced by this mutation. Additionally, we predicted the protein feature affected by this mutation site. The aim was to further deepen our understanding of the diversity of AI caused by different mutation sites in the FAM83H gene.

Methods

Whole-exome sequencing (WES) and Sanger sequencing were used to confirm the mutation sites. Physical features of the patient’s teeth were investigated using various methods including cone beam computer tomography (CBCT), scanning electron microscopy (SEM), contact profilometry (roughness measurement), and a nanomechanical tester (nanoindentation measurement). The protein features of wild-type and mutant FAM83H were predicted using bioinformatics methods.

Results

One previously discovered FAM83H heterozygous nonsense mutation c.1192C>T (p.Q398*) was detected in the patient. SEM revealed inconsistent dentinal tubules, and EDS showed that calcium and phosphorus were lower in the patient’s dentin but higher in the enamel compared to the control tooth. Roughness measurements showed that AI patients’ teeth had rougher occlusal surfaces than those of the control tooth. Nanoindentation measurements showed that the enamel and dentin hardness values of the AI patients’ teeth were both significantly reduced compared to those of the control tooth. Compared to the wild-type FAM83H protein, the mutant FAM83H protein shows alterations in stability, hydrophobicity, secondary structure, and tertiary structure. These changes could underlie functional differences and AI phenotype variations caused by this mutation site.

Conclusions

This study expands the understanding of the effects of FAM83H mutations on tooth structure.

Clinical relevance

Our study enhances our understanding of the genetic basis of AI and may contribute to improved diagnostics and personalized treatment strategies for patients with FAM83H-related AI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Foumou-Moretti N, Trentesaux T, Bocquet E, Delfosse C, Marquillier T (2021) Amelogenesis imperfecta and anterior open bite: how to optimize patient management? A review of the literature. L' Orthod Fr 92(4):421–430

    Google Scholar 

  2. Gadhia K, McDonald S, Arkutu N, Malik K (2012) Amelogenesis imperfecta: an introduction. Br Dent J 212(8):377–379

    PubMed  Google Scholar 

  3. Downey LM, Keen TJ, Jalili IK, McHale J, Aldred MJ, Robertson SP, Mighell A, Fayle S, Wissinger B, Inglehearn CF (2002) Identification of a locus on chromosome 2q11 at which recessive amelogenesis imperfecta and cone-rod dystrophy cosegregate. Europ J Human Genet EJHG 10(12):865–869

    Google Scholar 

  4. Pousette Lundgren G, Karsten A, Dahllöf G (2015) Oral health-related quality of life before and after crown therapy in young patients with amelogenesis imperfecta. Health Qual Life Outcomes 13:197

    PubMed  PubMed Central  Google Scholar 

  5. Lee SK, Seymen F, Lee KE, Kang HY, Yildirim M, Tuna EB, Gencay K, Hwang YH, Nam KH, De La Garza RJ et al (2010) Novel WDR72 mutation and cytoplasmic localization. J Dent Res 89(12):1378–1382

    PubMed  PubMed Central  Google Scholar 

  6. Smith CEL, Poulter JA, Antanaviciute A, Kirkham J, Brookes SJ, Inglehearn CF, Mighell AJ (2017) Amelogenesis imperfecta; genes, proteins, and pathways. Front Physiol 8:435

    PubMed  PubMed Central  Google Scholar 

  7. Wright JT, Frazier-Bowers S, Simmons D, Alexander K, Crawford P, Han ST, Hart PS, Hart TC (2009) Phenotypic variation in FAM83H-associated amelogenesis imperfecta. J Dent Res 88(4):356–360

    PubMed  PubMed Central  Google Scholar 

  8. Zheng Y, Lu T, Chen J, Li M, Xiong J, He F, Gan Z, Guo Y, Zhang L, Xiong F (2021) The gain-of-function FAM83H mutation caused hypocalcification amelogenesis imperfecta in a Chinese family. Clin Oral Investig 25(5):2915–2923

    PubMed  Google Scholar 

  9. Hyun HK, Lee SK, Lee KE, Kang HY, Kim EJ, Choung PH, Kim JW (2009) Identification of a novel FAM83H mutation and microhardness of an affected molar in autosomal dominant hypocalcified amelogenesis imperfecta. Int Endod J 42(11):1039–1043

    PubMed  Google Scholar 

  10. Zhang C, Song Y, Bian Z (2015) Ultrastructural analysis of the teeth affected by amelogenesis imperfecta resulting from FAM83H mutations and review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol 119(2):e69–e76

    PubMed  Google Scholar 

  11. He Z, Wang X, Zheng X, Yang C, He H, Song Y (2023) Fam83h mutation causes mandible underdevelopment via CK1α-mediated Wnt/β-catenin signaling in male C57/BL6J mice. Bone 172:116756

    PubMed  Google Scholar 

  12. Kim JW, Lee SK, Lee ZH, Park JC, Lee KE, Lee MH, Park JT, Seo BM, Hu JC, Simmer JP (2008) FAM83H mutations in families with autosomal-dominant hypocalcified amelogenesis imperfecta. Am J Hum Genet 82(2):489–494

    PubMed  PubMed Central  Google Scholar 

  13. Hart PS, Becerik S, Cogulu D, Emingil G, Ozdemir-Ozenen D, Han ST, Sulima PP, Firatli E, Hart TC (2009) Novel FAM83H mutations in Turkish families with autosomal dominant hypocalcified amelogenesis imperfecta. Clin Genet 75(4):401–404

    PubMed  PubMed Central  Google Scholar 

  14. Ding Y, Estrella MR, Hu YY, Chan HL, Zhang HD, Kim JW, Simmer JP, Hu JC (2009) Fam83h is associated with intracellular vesicles and ADHCAI. J Dent Res 88(11):991–996

    PubMed  PubMed Central  Google Scholar 

  15. Seymen F, Lee KE, Koruyucu M, Gencay K, Bayram M, Tuna EB, Lee ZH, Kim JW (2014) ENAM mutations with incomplete penetrance. J Dent Res 93(10):988–992

    PubMed  PubMed Central  Google Scholar 

  16. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424

    PubMed  PubMed Central  Google Scholar 

  17. Dorado S, Arias A, Jimenez-Octavio JR (2022) Biomechanical modelling for tooth survival studies: mechanical properties, loads and boundary conditions-a narrative review. Materials (Basel) 15(21)

  18. Gasteiger E (2005) Protein identification and analysis tools on the ExPASy server. In: The proteomics protocols handbook

    Google Scholar 

  19. Geourjon C, Deléage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11(6):681–684

    PubMed  Google Scholar 

  20. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46(W1):W296–w303

    PubMed  PubMed Central  Google Scholar 

  21. Seay C, Gibbon C, Hart J (2007) Intraexaminer and interexaminer reliability of mastoid fossa readings using a temporal artery thermometer. J Chiropr Med 6(2):66–69

    PubMed  PubMed Central  Google Scholar 

  22. Sriwattanapong K, Theerapanon T, Khamwachirapitak C, Sae-Ear P, Srijunbarl A, Porntaveetus T, Shotelersuk V (2023) Deep dental phenotyping and a novel FAM20A variant in patients with amelogenesis imperfecta type IG. Oral Dis

  23. Tjäderhane L, Carrilho MR, Breschi L, Tay FR, Pashley DH (2009) Dentin basic structure and composition—an overview. Endod Top 20(1):3–29

    Google Scholar 

  24. Heijs SC, Dietz W, Norén JG, Blanksma NG, Jälevik B (2007) Morphology and chemical composition of dentin in permanent first molars with the diagnose MIH. Swed Dent J 31(4):155–164

    PubMed  Google Scholar 

  25. Kammoun R, Behets C, Mansour L, Ghoul-Mazgar S (2018) Mineral features of connective dental hard tissues in hypoplastic amelogenesis imperfecta. Oral Dis 24(3):384–392

    PubMed  Google Scholar 

  26. Tjäderhane L, Buzalaf MA, Carrilho M, Chaussain C (2015) Matrix metalloproteinases and other matrix proteinases in relation to cariology: the era of 'dentin degradomics'. Caries Res 49(3):193–208

    PubMed  Google Scholar 

  27. Hall R, Septier D, Embery G, Goldberg M (1999) Stromelysin-1 (MMP-3) in forming enamel and predentine in rat incisor-coordinated distribution with proteoglycans suggests a functional role. Histochem J 31(12):761–770

    PubMed  Google Scholar 

  28. Paine CT, Paine ML, Luo W, Okamoto CT, Lyngstadaas SP, Snead ML (2000) A tuftelin-interacting protein (TIP39) localizes to the apical secretory pole of mouse ameloblasts. J Biol Chem 275(29):22284–22292

    PubMed  Google Scholar 

  29. Takano Y, Ozawa H, Crenshaw MA (1986) Ca-ATPase and ALPase activities at the initial calcification sites of dentin and enamel in the rat incisor. Cell Tissue Res 243(1):91–99

    PubMed  Google Scholar 

  30. Lee SK, Hu JC, Bartlett JD, Lee KE, Lin BP, Simmer JP, Kim JW (2008) Mutational spectrum of FAM83H: the C-terminal portion is required for tooth enamel calcification. Hum Mutat 29(8):E95–E99

    PubMed  PubMed Central  Google Scholar 

  31. Xie Y, Meng M, Cao L, Yang J, Ma Q, Huang X, Yu Y, Yang Q, Zou J, Du Q (2023) Amelogenesis imperfecta in a Chinese family resulting from a FAM83H variation and the effect of FAM83H on the secretion of enamel matrix proteins. Clin Oral Investig 27(3):1289–1299

    PubMed  Google Scholar 

  32. Saraogi I, Hamilton AD (2008) Alpha-helix mimetics as inhibitors of protein-protein interactions. Biochem Soc Trans 36(Pt 6):1414–1417

    PubMed  Google Scholar 

  33. Spencer RH, Rees DC (2002) The alpha-helix and the organization and gating of channels. Annu Rev Biophys Biomol Struct 31:207–233

    PubMed  Google Scholar 

  34. Schneider D, Finger C, Prodöhl A, Volkmer T (2007) From interactions of single transmembrane helices to folding of alpha-helical membrane proteins: analyzing transmembrane helix-helix interactions in bacteria. Curr Protein Pept Sci 8(1):45–61

    PubMed  Google Scholar 

  35. Marx DC, Fleming KG (2021) Local bilayer hydrophobicity modulates membrane protein stability. J Am Chem Soc 143(2):764–772

    PubMed  PubMed Central  Google Scholar 

  36. Sriwattanapong K, Nitayavardhana I, Theerapanon T, Thaweesapphithak S, Chantarawaratit PO, Garuyakich R, Phokaew C, Porntaveetus T, Shotelersuk V (2022) Age-related dental phenotypes and tooth characteristics of FAM83H-associated hypocalcified amelogenesis imperfecta. Oral Dis 28(3):734–744

    PubMed  Google Scholar 

  37. Wang SK, Zhang H, Hu CY, Liu JF, Chadha S, Kim JW, Simmer JP, Hu JCC (2021) FAM83H and autosomal dominant hypocalcified amelogenesis imperfecta. J Dent Res 100(3):293–301

    PubMed  Google Scholar 

  38. Wang SK, Hu Y, Smith CE, Yang J, Zeng C, Kim JW, Hu JC, Simmer JP (2019) The enamel phenotype in homozygous Fam83h truncation mice. Mole Gen Geno Med 7(6):e724

    Google Scholar 

  39. Zheng X, Huang W, He Z, Li Y, Li S, Song Y (2023) Effects of Fam83h truncation mutation on enamel developmental defects in male C57/BL6J mice. Bone 166:116595

    PubMed  Google Scholar 

  40. Zhang Y, Yang J, Yao H, Zhang Z, Song Y (2022) CRISPR/Cas9-mediated deletion of Fam83h induces defective tooth mineralization and hair development in rabbits. J Cell Mol Med 26(22):5670–5679

    PubMed  PubMed Central  Google Scholar 

  41. Yang M, Huang W, Yang F, Zhang T, Wang C, Song Y (2018) Fam83h mutation inhibits the mineralization in ameloblasts by activating Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun 501(1):206–211

    PubMed  Google Scholar 

  42. Alkattan R, Lippert F, Tang Q, Eckert GJ, Ando M (2018) The influence of hardness and chemical composition on enamel demineralization and subsequent remineralization. J Dent 75:34–40

    PubMed  Google Scholar 

  43. Wright JT (2023) Enamel phenotypes: genetic and environmental determinants. Genes (Basel) 14(3)

  44. Bottero-Cornillac MJ, Gaucher A, Wang C, Chaussidon M, Yvon J (1995) Dental abnormalities and early diagnosis of hyperphosphatasemia. Scanning Microsc 9(4):1179–1189 discussion 1189-1190

    PubMed  Google Scholar 

  45. Dayo AF, Wolff MS, Syed AZ, Mupparapu M (2021) Radiology of dental caries. Dent Clin N Am 65(3):427–445

    PubMed  Google Scholar 

  46. Malzone A, Bottino L, Velotti A: Hydroxyapatite. 1. Chemical and physical structure. Arch Stomatol (Napoli) 1989, 30(2):473-479.

  47. Belcheva AB, Philipov IA, Tomov GT (2016) Scanning еlectron microscopy of еnamel and dentin of тeeth with hypocalcified аmelogenesis imperfecta. Folia Med (Plovdiv) 58(1):54–59

    PubMed  Google Scholar 

  48. Ohrvik HG, Hjortsjö C (2020) Retrospective study of patients with amelogenesis imperfecta treated with different bonded restoration techniques. Clin Exp Dent Res 6(1):16–23

    PubMed  Google Scholar 

  49. Pospiech P (2002) All-ceramic crowns: bonding or cementing? Clin Oral Investig 6(4):189–197

    PubMed  Google Scholar 

  50. Tjäderhane L (2015) Dentin bonding: can we make it last? Oper Dent 40(1):4–18

    PubMed  Google Scholar 

  51. Kweon YS, Lee KE, Ko J, Hu JC, Simmer JP, Kim JW (2013) Effects of Fam83h overexpression on enamel and dentine formation. Arch Oral Biol 58(9):1148–1154

    PubMed  PubMed Central  Google Scholar 

  52. Smith CE, Whitehouse LL, Poulter JA, Brookes SJ, Day PF, Soldani F, Kirkham J, Inglehearn CF, Mighell AJ (2017) Defects in the acid phosphatase ACPT cause recessive hypoplastic amelogenesis imperfecta. Eur J Hum Genet 25(8):1015–1019

    PubMed  PubMed Central  Google Scholar 

  53. Sánchez-Quevedo MC, Ceballos G, García JM, Luna JD, Rodríguez IA, Campos A (2004) Dentine structure and mineralization in hypocalcified amelogenesis imperfecta: a quantitative X-ray histochemical study. Oral Dis 10(2):94–98

    PubMed  Google Scholar 

  54. Epasinghe DJ, Yiu CKY (2018) Effect of etching on bonding of a self-etch adhesive to dentine affected by amelogenesis imperfecta. J Investig Clin Dent 9(1)

  55. Pugach MK, Ozer F, Mulmadgi R, Li Y, Suggs C, Wright JT, Bartlett JD, Gibson CW, Lindemeyer RG (2014) Shear bond strength of dentin and deproteinized enamel of amelogenesis imperfecta mouse incisors. Pediatr Dent 36(5):130–136

    PubMed  PubMed Central  Google Scholar 

  56. de Souza JF, Fragelli CB, Jeremias F, Paschoal MAB, Santos-Pinto L (2017) de Cássia Loiola Cordeiro R: Eighteen-month clinical performance of composite resin restorations with two different adhesive systems for molars affected by molar incisor hypomineralization. Clin Oral Investig 21(5):1725–1733

    PubMed  Google Scholar 

  57. Bai RQ, He WB, Peng Q, Shen SH, Yu QQ, Du J, Tan YQ, Wang YH, Liu BJ (2022) A novel FAM83H variant causes familial amelogenesis imperfecta with incomplete penetrance. Mol Genet Genomic Med 10(4):e1902

    PubMed  PubMed Central  Google Scholar 

  58. Vu V, Verster AJ, Schertzberg M, Chuluunbaatar T, Spensley M, Pajkic D, Hart GT, Moffat J, Fraser AG (2015) Natural variation in gene expression modulates the severity of mutant phenotypes. Cell 162(2):391–402

    PubMed  Google Scholar 

  59. Sundell S, Valentin J (1986) Hereditary aspects and classification of hereditary amelogenesis imperfecta. Commun Dent Oral Epidemiol 14(4):211–216

    Google Scholar 

  60. Shawky RM (2014) Reduced penetrance in human inherited disease. Egypt J Med Hum Genet 15(2):103–111

    Google Scholar 

  61. Raj A, Rifkin SA, Andersen E, van Oudenaarden A (2010) L' Orthod Fr. Nature 463(7283):913–918

    PubMed  PubMed Central  Google Scholar 

  62. Gruber C, Bogunovic D (2020) Incomplete penetrance in primary immunodeficiency: a skeleton in the closet. Hum Genet 139(6-7):745–757

    PubMed  PubMed Central  Google Scholar 

  63. Sriwattanapong K, Theerapanon T, Boonprakong L, Srijunbarl A, Porntaveetus T, Shotelersuk V (2023) Novel ITGB6 variants cause hypoplastic-hypomineralized amelogenesis imperfecta and taurodontism: characterization of tooth phenotype and review of literature. BDJ Open 9(1):15

    PubMed  PubMed Central  Google Scholar 

  64. Wetselaar P, Lobbezoo F (2016) The tooth wear evaluation system: a modular clinical guideline for the diagnosis and management planning of worn dentitions. J Oral Rehabil 43(1):69–80

    PubMed  Google Scholar 

  65. El-Sayed W, Shore RC, Parry DA, Inglehearn CF, Mighell AJ (2010) Ultrastructural analyses of deciduous teeth affected by hypocalcified amelogenesis imperfecta from a family with a novel Y458X FAM83H nonsense mutation. Cells Tissues Organs 191(3):235–239

    PubMed  Google Scholar 

  66. Pavlic A, Petelin M, Battelino T (2007) Phenotype and enamel ultrastructure characteristics in patients with ENAM gene mutations g.13185-13186insAG and 8344delG. Arch Oral Biol 52(3):209–217

    PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (81800788 and 81773339), Science and Technology Department of Hunan Province, China (2017WK2041, 2018SK52511, and 2022ZK4084), Scientific Research Project of Hunan Provincial Health Commission (202208043514 and B202308056340), Hunan Provincial Natural Science Foundation of China (2022JJ30062), Natural Science Foundation of Changsha City (kq2202403 and kq2202412), Fund for the Xiangya Clinical Medicine Database of Central South University (2014-ZDYZ-1-16), Education and Teaching Reform Research Project of Central South University (2020jy165-3), Research Project on Postgraduate Education and Teaching Reform of Central South University (2021JGB072), Hunan Provincial Innovation Foundation For Postgraduate (CX20220370), and The Fundamental Research Funds for the Central Universities of Central South University (2022ZZTS0913 and 2022ZZTS0912).

Author information

Authors and Affiliations

Authors

Contributions

L.T. and Y.G. were in charge of task management and research conception. Q.L., M.-M.Z., M.-Y.W., N.-X.C., X.-N.S., Q.Z., H.Y., and Y.-Q.Z. were in charge of choosing the research topics and gathering the data. Y.-H.Z., Y.F., Q.Y., J.H., Z.-Y.O.-Y., D.-M.A., Y.-Z.F., and J.Z. conducted the statistical analyses. F.-Y.Z. supervised the project. Each author contributed to the analysis and writing of the publication.

Corresponding author

Correspondence to Feng-Yi Zhang.

Ethics declarations

Ethical approval and consent

The Second Xiangya Hospital, Central South University’s Institutional Review Board granted approval for this study (No. 2021031), and the Declaration of Helsinki’s procedures were followed throughout (2008). Before collecting the sample, the patient’s informed consent was obtained.

Consent to publish

NA.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, L., Guo, Y., Zhong, MM. et al. Tooth ultrastructure changes induced by a nonsense mutation in the FAM83H gene: insights into the diversity of amelogenesis imperfecta. Clin Oral Invest 27, 6111–6123 (2023). https://doi.org/10.1007/s00784-023-05228-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-023-05228-3

Keywords

Navigation