Skip to main content

Advertisement

Log in

Changes in condylar position and morphology after mandibular reconstruction by vascularized fibular free flap with condyle preservation

  • Research
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objects

Changes in condylar position and morphology after mandibular reconstruction are important to aesthetic and functional rehabilitation. We evaluated changes in condylar position and morphology at different stages after mandibular reconstruction using vascularized fibular free flap with condyle preservation.

Materials and methods

A total of 23 patients who underwent mandibular reconstruction with fibular flap were included in this retrospective study. CT data of all patients were recorded before surgery (T0), 7 to 14 days after surgery (T1), and at least 6 months after surgery (T2). Five parameters describing the condylar position and 4 parameters describing the morphology were measured in sagittal and coronal views of CT images. The association between clinical characteristics and changes in condylar position and morphology was analyzed. A finite element model was established to investigate the stress distribution and to predict the spatial movement tendency of the condyle after reconstruction surgery.

Results

The condylar position changed over time after mandibular reconstruction. The ipsilateral condyles moved inferiorly after surgery (T0 to T1) and continually move anteriorly, inferiorly, and laterally during long-term follow-up (T1 to T2). Contrary changes were noted in the contralateral condyles with no statistical significance. No morphological changes were detected. The relationship between clinical characteristics and changes in condylar position and morphology was not statistically significant. A consistent result was observed in the finite element analysis.

Conclusion

Condylar positions showed obvious changes over time after mandibular reconstruction with condylar preservation. Nevertheless, further studies should be conducted to evaluate the clinical function outcomes and condylar position.

Clinical relevance

These findings can form the basis for the evaluation of short-term and long-term changes in condylar position and morphology among patients who have previously undergone mandibular reconstruction by FFF with condyle preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cordeiro PG, Disa JJ, Hidalgo DA, Hu QY (1999) Reconstruction of the mandible with osseous free flaps: a 10-year experience with 150 consecutive patients. Plast Reconstr Surg 104:1314–1320. https://doi.org/10.1097/00006534-199910000-00011

    Article  PubMed  Google Scholar 

  2. Löfstrand J, Nyberg M, Karlsson T et al (2018) Quality of life after free fibula flap reconstruction of segmental mandibular defects. J Reconstr Microsurg 34:108–120. https://doi.org/10.1055/s-0037-1606537

    Article  PubMed  Google Scholar 

  3. Hidalgo DA (1989) Fibula free flap: a new method of mandible reconstruction. Plast Reconstr Surg 84:71–79

    Article  PubMed  Google Scholar 

  4. Kim J-W, Hwang J-H, Ahn K-M (2016) Fibular flap for mandible reconstruction in osteoradionecrosis of the jaw: selection criteria of fibula flap. Maxillofac Plast Reconstr Surg 38:46. https://doi.org/10.1186/s40902-016-0093-x

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gravvanis A, Anterriotis D, Kakagia D (2017) Mandibular condyle reconstruction with fibula free-tissue transfer: the role of the masseter muscle. J Craniofac Surg 28:1955–1959. https://doi.org/10.1097/SCS.0000000000003998

    Article  PubMed  Google Scholar 

  6. Petrovic I, Panchal H, De Souza Franca PD et al (2019) A systematic review of validated tools assessing functional and aesthetic outcomes following fibula free flap reconstruction of the mandible. Head Neck 41:248–255. https://doi.org/10.1002/hed.25452

    Article  PubMed  Google Scholar 

  7. Fernandes R (2006) Fibula free flap in mandibular reconstruction. Atlas Oral Maxillofac Surg Clin North Am 14:143–150. https://doi.org/10.1016/j.cxom.2006.05.003

    Article  PubMed  Google Scholar 

  8. Lonie S, Herle P, Paddle A et al (2016) Mandibular reconstruction: meta-analysis of iliac- versus fibula-free flaps. ANZ J Surg 86:337–342. https://doi.org/10.1111/ans.13274

    Article  PubMed  Google Scholar 

  9. Mottini M, Seyed Jafari SM, Shafighi M, Schaller B (2016) New approach for virtual surgical planning and mandibular reconstruction using a fibula free flap. Oral Oncol 59:e6–e9. https://doi.org/10.1016/j.oraloncology.2016.06.001

    Article  PubMed  Google Scholar 

  10. Yu Y, Zhang W-B, Liu X-J et al (2016) Three-dimensional accuracy of virtual planning and surgical navigation for mandibular reconstruction with free fibula flap. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg 74:1503.e1-1503.e10. https://doi.org/10.1016/j.joms.2016.02.020

    Article  Google Scholar 

  11. Bao T, He J, Yu C et al (2017) Utilization of a pre-bent plate-positioning surgical guide system in precise mandibular reconstruction with a free fibula flap. Oral Oncol 75:133–139. https://doi.org/10.1016/j.oraloncology.2017.11.011

    Article  PubMed  Google Scholar 

  12. Yang WF, Choi WS, Zhu WY, Su YX (2020) “One-piece” patient-specific reconstruction plate for double-barrel fibula-based mandibular reconstruction. Int J Oral Maxillofac Surg 49:1016–1019. https://doi.org/10.1016/j.ijom.2019.12.006

    Article  PubMed  Google Scholar 

  13. Atallah S, Bozec A, Ransy P et al (2021) Functional evaluation of mandibular reconstruction with bone free flap. A GETTEC study. Eur Ann Otorhinolaryngol Head Neck Dis 138:82–88. https://doi.org/10.1016/j.anorl.2020.08.005

    Article  PubMed  Google Scholar 

  14. Ince B, Ismayilzade M, Dadaci M, Zuhal E (2020) Computer-assisted versus conventional freehand mandibular reconstruction with fibula free flap: a systematic review and meta-analysis. Plast Reconstr Surg 146:686e–687e. https://doi.org/10.1097/PRS.0000000000007295

    Article  PubMed  Google Scholar 

  15. Powcharoen W, Yang W-F, Yan Li K et al (2019) Computer-assisted versus conventional freehand mandibular reconstruction with fibula free flap: a systematic review and meta-analysis. Plast Reconstr Surg 144:1417–1428. https://doi.org/10.1097/PRS.0000000000006261

    Article  PubMed  Google Scholar 

  16. van Baar GJC, Forouzanfar T, Liberton NPTJ et al (2018) Accuracy of computer-assisted surgery in mandibular reconstruction: a systematic review. Oral Oncol 84:52–60. https://doi.org/10.1016/j.oraloncology.2018.07.004

    Article  PubMed  Google Scholar 

  17. Yang W-F, Choi WS, Wong MC-M et al (2021) Three-dimensionally printed patient-specific surgical plates increase accuracy of oncologic head and neck reconstruction versus conventional surgical plates: a comparative study. Ann Surg Oncol 28:363–375. https://doi.org/10.1245/s10434-020-08732-y

    Article  PubMed  Google Scholar 

  18. Yang W-F, Choi WS, Zhu W-Y et al (2022) Spatial deviations of the temporomandibular joint after oncological mandibular reconstruction. Int J Oral Maxillofac Surg 51:44–53. https://doi.org/10.1016/j.ijom.2021.02.033

    Article  PubMed  Google Scholar 

  19. Wang W, Shan X-F, Liang J et al (2019) Changes in condylar position after mandibular reconstruction with condylar head preservation by computed tomography. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg 77:1286–1292. https://doi.org/10.1016/j.joms.2018.12.037

    Article  Google Scholar 

  20. Bonnet AS, Postaire M, Lipinski P (2009) Biomechanical study of mandible bone supporting a four-implant retained bridge: finite element analysis of the influence of bone anisotropy and foodstuff position. Med Eng Phys 31:806–815. https://doi.org/10.1016/j.medengphy.2009.03.004

    Article  PubMed  Google Scholar 

  21. Roesler CRM, Horn FJ, Moré ADO, Fancello EA (2014) A biomechanical analysis of titanium miniplates used for treatment of mandible condylar fracture with the finite element method. J Med Imaging Health Inform 4:106–112. https://doi.org/10.1166/jmihi.2014.1227

    Article  Google Scholar 

  22. Sabeti AK, Karimizadeh Z, Rafatjou R (2020) Maximum equivalent stress induced and the displacement of the developing permanent first molars after the premature loss of primary second molars: a finite element analysis. Dent Med Probl 57:401–409. https://doi.org/10.17219/dmp/122041

    Article  PubMed  Google Scholar 

  23. Savoldelli C, Bouchard P-O, Loudad R et al (2012) Stress distribution in the temporo-mandibular joint discs during jaw closing: a high-resolution three-dimensional finite-element model analysis. Surg Radiol Anat SRA 34:405–413. https://doi.org/10.1007/s00276-011-0917-4

    Article  PubMed  Google Scholar 

  24. Yang W-F, Powcharoen W, Su Y-X (2020) Computer-assisted surgery increases efficiency of mandibular reconstruction with fibula free flap. Plast Reconstr Surg 146:687e–688e. https://doi.org/10.1097/PRS.0000000000007296

    Article  PubMed  Google Scholar 

  25. Zheng G, Su Y, Liao G et al (2013) Mandibular reconstruction assisted by preoperative simulation and accurate transferring templates: preliminary report of clinical application. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg 71:1613–1618. https://doi.org/10.1016/j.joms.2013.02.018

    Article  Google Scholar 

  26. Brown JS, Barry C, Ho M, Shaw R (2016) A new classification for mandibular defects after oncological resection. Lancet Oncol 17:e23-30. https://doi.org/10.1016/S1470-2045(15)00310-1

    Article  PubMed  Google Scholar 

  27. Kamelchuk LS, Grace MG, Major PW (1996) Post-imaging temporomandibular joint space analysis. Cranio J Craniomandib Pract 14:23–29. https://doi.org/10.1080/08869634.1996.11745945

    Article  Google Scholar 

  28. Tyan S, Kim H-H, Park K-H et al (2017) Sequential changes of postoperative condylar position in patients with facial asymmetry. Angle Orthod 87:260–268. https://doi.org/10.2319/030916-203.1

    Article  PubMed  Google Scholar 

  29. Hoppenreijs TJ, Freihofer HP, Stoelinga PJ et al (1998) Condylar remodelling and resorption after Le Fort I and bimaxillary osteotomies in patients with anterior open bite. A clinical and radiological study. Int J Oral Maxillofac Surg 27:81–91. https://doi.org/10.1016/s0901-5027(98)80301-9

    Article  PubMed  Google Scholar 

  30. Kinzinger G, Kober C, Diedrich P (2007) Topography and morphology of the mandibular condyle during fixed functional orthopedic treatment –a magnetic resonance imaging study. J Orofac Orthop Fortschritte Kieferorthopadie OrganOfficial J Dtsch Ges Kieferorthopadie 68:124–147. https://doi.org/10.1007/s00056-007-0650-0

    Article  Google Scholar 

  31. Pullinger A, Hollender L (1986) Variation in condyle-fossa relationships according to different methods of evaluation in tomograms. Oral Surg Oral Med Oral Pathol 62:719–727. https://doi.org/10.1016/0030-4220(86)90270-7

    Article  PubMed  Google Scholar 

  32. Gao H, Li X, Wang C et al (2019) Mechanobiologically optimization of a 3D titanium-mesh implant for mandibular large defect: a simulated study. Mater Sci Eng C Mater Biol Appl 104:109934. https://doi.org/10.1016/j.msec.2019.109934

    Article  PubMed  Google Scholar 

  33. Sarrafpour B, Swain M, Li Q, Zoellner H (2013) Tooth eruption results from bone remodelling driven by bite forces sensed by soft tissue dental follicles: a finite element analysis. PloS One 8:e58803. https://doi.org/10.1371/journal.pone.0058803

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zannoni C, Mantovani R, Viceconti M (1998) Material properties assignment to finite element models of bone structures: a new method. Med Eng Phys 20:735–740. https://doi.org/10.1016/s1350-4533(98)00081-2

    Article  PubMed  Google Scholar 

  35. Koolstra JH, van Eijden TMGJ (2005) Combined finite-element and rigid-body analysis of human jaw joint dynamics. J Biomech 38:2431–2439. https://doi.org/10.1016/j.jbiomech.2004.10.014

    Article  PubMed  Google Scholar 

  36. Pavlychuk T, Chernogorskyi D, Chepurnyi Y et al (2020) Biomechanical evaluation of type p condylar head osteosynthesis using conventional small-fragment screws reinforced by a patient specific two-component plate. Head Face Med 16:25. https://doi.org/10.1186/s13005-020-00236-0

    Article  PubMed  PubMed Central  Google Scholar 

  37. Antic S, Vukicevic AM, Milasinovic M et al (2015) Impact of the lower third molar presence and position on the fragility of mandibular angle and condyle: a Three-dimensional finite element study. J Cranio-Maxillo-fac Surg Off Publ Eur Assoc Cranio-Maxillo-fac Surg 43:870–878. https://doi.org/10.1016/j.jcms.2015.03.025

    Article  Google Scholar 

  38. Ma L, Zhou Y, Zhang Y et al (2015) Biomechanical effects of masticatory muscles on human mandible after reconstructed mandibulectomy tumor. J Craniofac Surg. https://doi.org/10.1097/SCS.0000000000000840

    Article  PubMed  Google Scholar 

  39. McGregor AD, MacDonald DG (1993) Patterns of spread of squamous cell carcinoma to the ramus of the mandible. Head Neck 15:440–444. https://doi.org/10.1002/hed.2880150512

    Article  PubMed  Google Scholar 

  40. Brown JS, Browne RM (1995) Factors influencing the patterns of invasion of the mandible by oral squamous cell carcinoma. Int J Oral Maxillofac Surg 24:417–426. https://doi.org/10.1016/s0901-5027(05)80471-0

    Article  PubMed  Google Scholar 

  41. Nahabedian MY, Tufaro A, Manson PN (2001) Improved mandible function after hemimandibulectomy, condylar head preservation, and vascularized fibular reconstruction. Ann Plast Surg 46:506–510. https://doi.org/10.1097/00000637-200105000-00009

    Article  PubMed  Google Scholar 

  42. Makiguchi T, Yokoo S, Hashikawa K et al (2015) Evaluation of bone height of the free fibula flap in mandible reconstruction. J Craniofac Surg 26:673–676. https://doi.org/10.1097/SCS.0000000000001509

    Article  PubMed  Google Scholar 

  43. Shokri T, Stahl LE, Kanekar SG, Goyal N (2019) Osseous changes over time in free fibular flap reconstruction. Laryngoscope 129:1113–1116. https://doi.org/10.1002/lary.27337

    Article  PubMed  Google Scholar 

  44. Hidalgo DA, Pusic AL (2002) Free-flap mandibular reconstruction: a 10-year follow-up study. Plast Reconstr Surg 110:438–449; discussion 450–451. https://doi.org/10.1097/00006534-200208000-00010

  45. Wilkman T, Apajalahti S, Wilkman E et al (2017) A comparison of bone resorption over time: an analysis of the free scapular, iliac crest, and fibular microvascular flaps in mandibular reconstruction. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg 75:616–621. https://doi.org/10.1016/j.joms.2016.09.009

    Article  Google Scholar 

  46. Kim Y-J, Oh K-M, Hong J-S et al (2012) Do patients treated with bimaxillary surgery have more stable condylar positions than those who have undergone single-jaw surgery? J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg 70:2143–2152. https://doi.org/10.1016/j.joms.2011.08.028

    Article  Google Scholar 

  47. Tabrizi R, Shahidi S, Bahramnejad E, Arabion H (2016) Evaluation of condylar position after orthognathic surgery for treatment of class II vertical maxillary excess and mandibular deficiency by using cone-beam computed tomography. J Dent Shiraz Iran 17:318–325

    Google Scholar 

  48. Chen S, Lei J, Wang X et al (2013) Short- and long-term changes of condylar position after bilateral sagittal split ramus osteotomy for mandibular advancement in combination with Le Fort I osteotomy evaluated by cone-beam computed tomography. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg 71:1956–1966. https://doi.org/10.1016/j.joms.2013.06.213

    Article  Google Scholar 

  49. Walker RV (1994) Condylar fractures: nonsurgical management. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg 52:1185–1188. https://doi.org/10.1016/0278-2391(94)90542-8

    Article  Google Scholar 

  50. Kim Y-I, Jung Y-H, Cho B-H et al (2010) The assessment of the short- and long-term changes in the condylar position following sagittal split ramus osteotomy (SSRO) with rigid fixation. J Oral Rehabil 37:262–270. https://doi.org/10.1111/j.1365-2842.2009.02056.x

    Article  PubMed  Google Scholar 

  51. Colletti G, Autelitano L, Rabbiosi D et al (2014) Technical refinements in mandibular reconstruction with free fibula flaps: outcome-oriented retrospective review of 99 cases. Acta Otorhinolaryngol Ital 34:342

    PubMed  PubMed Central  Google Scholar 

  52. Li X, Jiang C, Gao H et al (2020) Biomechanical analysis of various reconstructive methods for the mandibular body and ramus defect using a free vascularized fibula flap. BioMed Res Int 2020:8797493. https://doi.org/10.1155/2020/8797493

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bolzoni A, Mapelli A, Baj A et al (2015) Evaluation of three-dimensional mandibular movements after reconstruction with free fibula flap. Acta Otorhinolaryngol Ital Organo Uff Della Soc Ital Otorinolaringol E Chir Cerv-facc 35:371–378. https://doi.org/10.14639/0392-100X-504

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Haoliang Chen and Guowen Sun conceived the study design and contributed in manuscript revision. Yongheng Li contributed in the finite element analysis in this research. Haoliang Chen and Yawei Sun participated in data collection and statistical analysis. Xin Chen, Yumei Pu, and Guowen Sun were the main surgeons of the operation in this research. All authors reviewed the manuscript.

Corresponding author

Correspondence to Guowen Sun.

Ethics declarations

Ethics approval and consent to participate

Ethical approval for this study was granted by the Ethics Committee of Nanjing Stomatological Hospital (2018NL-027(KS)). All procedures were executed strictly according to the tenets of the Declaration of Helsinki. Patient written consent was obtained routinely.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Haoliang Chen and Yongheng Li contributed equally to this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Li, Y., Sun, Y. et al. Changes in condylar position and morphology after mandibular reconstruction by vascularized fibular free flap with condyle preservation. Clin Oral Invest 27, 6097–6109 (2023). https://doi.org/10.1007/s00784-023-05225-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-023-05225-6

Keywords

Navigation