Skip to main content

Advertisement

Log in

Evaluation of oxidative stress cycle in healthy and inflamed dental pulp tissue: a laboratory investigation

  • Research
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The purpose of this study was to investigate the oxidative stress cycle consisting of reactive oxygen molecules (ROS), glutathione (GSH) and glutathione S-transferase (GST) in caries-related pulp inflammation.

Methodology

Fifty-four pulp tissue samples were collected from healthy donors with the diagnosis of reversible pulpitis, symptomatic irreversible pulpitis, and healthy pulp. Twelve pulp samples from each group were homogenized and total protein, ROS, GSH, and GST were measured by spectrophotometer. The remaining 6 samples from each group were prepared for paraffin block and used for the histopathologic and immunohistochemical evaluation of oxidative stress parameters and TUNEL labeling. Data were analyzed statistically.

Results

The results revealed that total protein levels significantly decreased; however, ROS levels increased in both reversible and irreversible pulpitis compared to the healthy pulp (p < 0.01). Also, as inflammation increases, GST enzyme levels decrease while GSH levels increase significantly (p < 0.05). It was found that the number of TUNEL (+) cells was increased in irreversible pulpitis samples compared to healthy and reversible pulpitis groups (p < 0.05). GSTP1 and GSH immunoreactivity were also observed in irreversible pulpitis samples.

Conclusions

It has been revealed that caries-related inflammation alters the oxidative stress cycle in dental pulp tissue. The increase in GSH levels in the inflamed dental pulp due to the increase in ROS levels may improve the defensive ability of the dental pulp.

Clinical Relevance

There is a relationship between oxidative stress and inflammation. Control of excessive oxidative stress in pulpitis can stimulate reparative and regenerative processes. The present findings may provide an overview of the management of oxidative stress in cases with pulpitis during regenerative treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Warfvinge J, Dahlen G, Bergenholtz G (1985) Dental pulp response to bacterial cell wall material. J Dent Res 64(8):1046–1050. https://doi.org/10.1177/00220345850640080401

    Article  PubMed  Google Scholar 

  2. Cooper PR, Takahashi Y, Graham LW, Simon S, Imazato S, Smith AJ (2010) Inflammation-regeneration interplay in the dentine-pulp complex. J Dent 38(9):687–697. https://doi.org/10.1016/j.jdent.2010.05.016

    Article  PubMed  Google Scholar 

  3. Lee NH, Lee YH, Bhattari G, Lee IK, Yun BS, Jeon JG et al (2011) Reactive oxygen species removal activity of davallialactone reduces lipopolysaccharide-induced pulpal inflammation through inhibition of the extracellular signal-regulated kinase 1/2 and nuclear factor kappa b pathway. J Endod 37(4):491–495. https://doi.org/10.1016/j.joen.2011.01.012

    Article  PubMed  Google Scholar 

  4. Hahn CL, Liewehr FR (2007) Relationships between caries bacteria, host responses, and clinical signs and symptoms of pulpitis. J Endod 33(3):213–219. https://doi.org/10.1016/j.joen.2006.11.008

    Article  PubMed  Google Scholar 

  5. Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776. https://doi.org/10.1146/annurev.biochem.77.061606.161055

    Article  PubMed  PubMed Central  Google Scholar 

  6. Okahashi N, Nakata M, Sumitomo T, Terao Y, Kawabata S (2013) Hydrogen peroxide produced by oral Streptococci induces macrophage cell death. PLoS One 8(5):e62563. https://doi.org/10.1371/journal.pone.0062563

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cooper PR, Chicca IJ, Holder MJ, Milward MR (2017) Inflammation and regeneration in the dentin-pulp complex: net gain or net loss? J Endod 43(9S):S87–S94. https://doi.org/10.1016/j.joen.2017.06.011

    Article  PubMed  Google Scholar 

  8. Aqawi M, Sionov RV, Gallily R, Friedman M, Steinberg D (2021) Anti-biofilm activity of cannabigerol against Streptococcus mutans. Microorganisms 9(10). https://doi.org/10.3390/microorganisms9102031

  9. Farges JC, Alliot-Licht B, Renard E, Ducret M, Gaudin A, Smith AJ et al (2015) Dental pulp defence and repair mechanisms in dental caries. Mediators Inflamm 2015:230251. https://doi.org/10.1155/2015/230251

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fiers W, Beyaert R, Declercq W, Vandenabeele P (1999) More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene. 18(54):7719–7730. https://doi.org/10.1038/sj.onc.1203249

    Article  PubMed  Google Scholar 

  11. Gallorini M, Cataldi A, di Giacomo V (2014) HEMA-induced cytotoxicity: oxidative stress, genotoxicity and apoptosis. Int Endod J 47(9):813–818. https://doi.org/10.1111/iej.12232

    Article  PubMed  Google Scholar 

  12. Kim JC, Lee YH, Yu MK, Lee NH, Park JD, Bhattarai G et al (2012) Anti-inflammatory mechanism of PPARgamma on LPS-induced pulp cells: role of the ROS removal activity. Arch Oral Biol 57(4):392–400. https://doi.org/10.1016/j.archoralbio.2011.09.009

    Article  PubMed  Google Scholar 

  13. Lee YH, Kim GE, Song YB, Paudel U, Lee NH, Yun BS et al (2013) Davallialactone reduces inflammation and repairs dentinogenesis on glucose oxidase-induced stress in dental pulp cells. J Endod 39(11):1401–1406. https://doi.org/10.1016/j.joen.2013.06.033

    Article  PubMed  Google Scholar 

  14. Soares DG, Goncalves Basso F, Hebling J, de Souza Costa CA (2015) Effect of hydrogen-peroxide-mediated oxidative stress on human dental pulp cells. J Dent 43(6):750–756. https://doi.org/10.1016/j.jdent.2014.12.006

    Article  PubMed  Google Scholar 

  15. Lee SK, Min KS, Kim Y, Jeong GS, Lee SH, Lee HJ et al (2008) Mechanical stress activates proinflammatory cytokines and antioxidant defense enzymes in human dental pulp cells. J Endod 34(11):1364–1369. https://doi.org/10.1016/j.joen.2008.08.024

    Article  PubMed  Google Scholar 

  16. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40. https://doi.org/10.1016/j.cbi.2005.12.009

    Article  PubMed  Google Scholar 

  17. Chapple IL, Matthews JB (2000) The role of reactive oxygen and antioxidant species in periodontal tissue destruction. Periodontol 2007(43):160–232. https://doi.org/10.1111/j.1600-0757.2006.00178.x

    Article  Google Scholar 

  18. Jiao Y, Ma S, Wang Y, Li J, Shan L, Liu Q et al (2016) N-Acetyl cysteine depletes reactive oxygen species and prevents dental monomer-induced intrinsic mitochondrial apoptosis in vitro in human dental pulp cells. PLoS One 11(1):e0147858. https://doi.org/10.1371/journal.pone.0147858

    Article  PubMed  PubMed Central  Google Scholar 

  19. Guo X, Chen J (2019) The protective effects of saxagliptin against lipopolysaccharide (LPS)-induced inflammation and damage in human dental pulp cells. Artif Cells Nanomed Biotechnol 47(1):1288–1294. https://doi.org/10.1080/21691401.2019.1596925

    Article  PubMed  Google Scholar 

  20. Horsophonphong S, Kitkumthorn N, Sritanaudomchai H, Nakornchai S, Surarit R (2020) High glucose affects proliferation, reactive oxygen species and mineralization of human dental pulp cells. Braz Dent J. 31(3):298–303. https://doi.org/10.1590/0103-6440202003120

    Article  PubMed  Google Scholar 

  21. Bagheri A, Ebrahimpour S, Nourbakhsh N, Talebi S, Esmaeili A (2021) Protective effect of quercetin on alteration of antioxidant genes expression and histological changes in the dental pulp of the streptozotocin-diabetic rats. Arch Oral Biol. 125:105088. https://doi.org/10.1016/j.archoralbio.2021.105088

    Article  PubMed  Google Scholar 

  22. Aslantas EE, Buzoglu HD, Muftuoglu SF, Atilla P, Karapinar SP, Aksoy Y (2022) Effects of aging and inflammation on catalase activity in human dental pulp. Arch Oral Biol. 141:105482. https://doi.org/10.1016/j.archoralbio.2022.105482

    Article  PubMed  Google Scholar 

  23. Esposito P, Varvara G, Murmura G, Terlizzi A, Caputi S (2003) Ability of healthy and inflamed human dental pulp to reduce hydrogen peroxide. Eur J Oral Sci 111(5):454–456. https://doi.org/10.1034/j.1600-0722.2003.00062.x

    Article  PubMed  Google Scholar 

  24. Galler KM, Weber M, Korkmaz Y, Widbiller M, Feuerer M (2021) Inflammatory response mechanisms of the dentine-pulp complex and the periapical tissues. Int J Mol Sci. 22(3). https://doi.org/10.3390/ijms22031480

  25. Buzoglu HD, Burus A, Bayazit Y (2022) Goldberg M. Stem cell and oxidative stress-inflammation cycle. Curr Stem Cell Res Ther. https://doi.org/10.2174/1574888X17666221012151425

  26. Jun SK, Yoon JY, Mahapatra C, Park JH, Kim HW, Kim HR et al (2019) Ceria-incorporated MTA for accelerating odontoblastic differentiation via ROS downregulation. Dent Mater 35(9):1291–1299. Epub 20190627. https://doi.org/10.1016/j.dental.2019.05.024

    Article  PubMed  Google Scholar 

  27. Neves VCM, Yianni V, Sharpe PT (2020) Macrophage modulation of dental pulp stem cell activity during tertiary dentinogenesis. Sci Rep 10(1):20216. https://doi.org/10.1038/s41598-020-77161-4

    Article  PubMed  PubMed Central  Google Scholar 

  28. Aslantas EE, Buzoglu HD, Karapinar SP, Cehreli ZC, Muftuoglu S, Atilla P et al (2016) Age-related changes in the alkaline phosphatase activity of healthy and inflamed human dental pulp. J Endod 42(1):131–134. https://doi.org/10.1016/j.joen.2015.10.003

    Article  PubMed  Google Scholar 

  29. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  PubMed  Google Scholar 

  30. Ozcan M, Esendagli G, Musdal Y, Canpinar H, Bacanli M, Anlar HG et al (2018) Dual actions of the antioxidant chlorophyllin, a glutathione transferase P1-1 inhibitor, in tumorigenesis and tumor progression. J Cell Biochem. https://doi.org/10.1002/jcb.27974

  31. Li X, Hu L, Ma L, Chang S, Wang W, Feng Y et al (2019) Severe periodontitis may influence cementum and dental pulp through inflammation, oxidative stress, and apoptosis. J Periodontol. 90(11):1297–1306. https://doi.org/10.1002/JPER.18-0604

    Article  PubMed  Google Scholar 

  32. Ricucci D, Loghin S, Siqueira JF Jr (2014) Correlation between clinical and histologic pulp diagnoses. J Endod. 40(12):1932–1939. https://doi.org/10.1016/j.joen.2014.08.010

    Article  PubMed  Google Scholar 

  33. Babb R, Chandrasekaran D, Carvalho Moreno Neves V, Sharpe PT (2017) Axin2-expressing cells differentiate into reparative odontoblasts via autocrine Wnt/beta-catenin signaling in response to tooth damage. Sci Rep 7(1):3102. https://doi.org/10.1038/s41598-017-03145-6

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kadowaki M, Yoshida S, Itoyama T, Tomokiyo A, Hamano S, Hasegawa D et al (2022) Involvement of M1/M2 macrophage polarization in reparative dentin formation. Life (Basel) 12(11). https://doi.org/10.3390/life12111812

  35. Abuarqoub D, Aslam N, Zaza R, Jafar H, Zalloum S, Atoom R et al (2022) The immunomodulatory and regenerative effect of biodentine on human THP-1 cells and dental pulp stem cells: in vitro study. Biomed Res Int 2022:2656784. https://doi.org/10.1155/2022/2656784

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lin LM, Ricucci D, Saoud TM, Sigurdsson A, Kahler B (2020) Vital pulp therapy of mature permanent teeth with irreversible pulpitis from the perspective of pulp biology. Aust Endod J. 46(1):154–166. https://doi.org/10.1111/aej.12392

    Article  PubMed  Google Scholar 

  37. Duncan HF (2022) Present status and future directions-Vital pulp treatment and pulp preservation strategies. Int Endod J 55(Suppl 3(Suppl 3)):497–511

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mainkar A, Kim SG (2018) Diagnostic accuracy of 5 dental pulp tests: a systematic review and meta-analysis. J Endod. 44(5):694–702. https://doi.org/10.1016/j.joen.2018.01.021

    Article  PubMed  Google Scholar 

  39. Matsuo T, Nakanishi T, Shimizu H, Ebisu S (1996) A clinical study of direct pulp capping applied to carious-exposed pulps. J Endod 22(10):551–556. https://doi.org/10.1016/S0099-2399(96)80017-3

    Article  PubMed  Google Scholar 

  40. Loureiro C, Buzalaf MAR, Pessan JP, Moraes FRN, Pela VT, Ventura TMO et al (2020) Comparative analysis of the proteomic profile of the dental pulp in different conditions. A pPilot sStudy. Braz Dent J 31(3):319–336. https://doi.org/10.1590/0103-6440202003167

    Article  PubMed  Google Scholar 

  41. Silva PAO, Lima SMF, Freire MS, Murad AM, Franco OL, Rezende TMB (2021) Proteomic analysis of human dental pulp in different clinical diagnosis. Clin Oral Investig. 25(5):3285–3295. https://doi.org/10.1007/s00784-020-03660-3

    Article  PubMed  Google Scholar 

  42. Malmezat T, Breuille D, Capitan P, Mirand PP, Obled C (2000) Glutathione turnover is increased during the acute phase of sepsis in rats. J Nutr 130(5):1239–1246. https://doi.org/10.1093/jn/130.5.1239

    Article  PubMed  Google Scholar 

  43. Ghezzi P (2011) Role of glutathione in immunity and inflammation in the lung. Int J Gen Med. 4:105–113. https://doi.org/10.2147/IJGM.S15618

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ulrich K, Jakob U (2019) The role of thiols in antioxidant systems. Free Radic Biol Med 140:14–27. https://doi.org/10.1016/j.freeradbiomed.2019.05.035

    Article  PubMed  PubMed Central  Google Scholar 

  45. Park WH (2013) H(2)O(2) inhibits the growth of human pulmonary fibroblast cells by inducing cell death, GSH depletion and G1 phase arrest. Mol Med Rep. 7(4):1235–1240. https://doi.org/10.3892/mmr.2013.1303

    Article  PubMed  Google Scholar 

  46. Tsai CC, Chen HS, Chen SL, Ho YP, Ho KY, Wu YM et al (2005) Lipid peroxidation: a possible role in the induction and progression of chronic periodontitis. J Periodontal Res 40(5):378–384. https://doi.org/10.1111/j.1600-0765.2005.00818.x

    Article  PubMed  Google Scholar 

  47. Panjamurthy K, Manoharan S, Ramachandran CR (2005) Lipid peroxidation and antioxidant status in patients with periodontitis. Cell Mol Biol Lett 10(2):255–264

    PubMed  Google Scholar 

  48. Ikegami K, Lalonde C, Young YK, Picard L, Demling R (1994) Comparison of plasma reduced glutathione and oxidized glutathione with lung and liver tissue oxidant and antioxidant activity during acute inflammation. Shock 1(4):307–312. https://doi.org/10.1097/00024382-199404000-00010

    Article  PubMed  Google Scholar 

  49. Keller GA, Barke R, Harty JT, Humphrey E, Simmons RL (1985) Decreased hepatic glutathione levels in septic shock. Predisposition of hepatocytes to oxidative stress: an experimental approach. Arch Surg 120(8):941–945. https://doi.org/10.1001/archsurg.1985.01390320065013

    Article  PubMed  Google Scholar 

  50. Laborde E (2010) Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death. Cell Death Differ 17(9):1373–1380. https://doi.org/10.1038/cdd.2010.80

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Hacettepe University Scientific Research Project Coordination Unit (project ID:17226).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Dogan Buzoglu.

Ethics declarations

Ethics approval

In this article, dental pulp biopsy materials were used for experimental studies. All procedures performed involving human tissues were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 helsinki declaration and its later amendments or comparable ethical standards. Ethical approval was obtained from the Institutional Ethics Board of Hacettepe University (Non-Interventional Clinical Researches Ethics Committee) (number: GO 18/483-23).

Consent to participate

Each participant signed a comprehensive informed consent form.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dogan Buzoglu, H., Ozcan, M., Bozdemir, O. et al. Evaluation of oxidative stress cycle in healthy and inflamed dental pulp tissue: a laboratory investigation. Clin Oral Invest 27, 5913–5923 (2023). https://doi.org/10.1007/s00784-023-05203-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-023-05203-y

Keywords

Navigation