Skip to main content

Advertisement

Log in

Effects of osseous structure based on three-dimensional reconstructive imaging evaluation in the assessment of temporomandibular joint disc position

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

This pilot morphological study aimed to investigate the association between anterior disc displacement (ADD) and the status of the mandibular condyle and articular fossa.

Materials and methods

Thirty-four patients were divided into a normal articular disc position group and an ADD with and without reduction group. Images reconstructed were used to determine multiple group comparisons of these three different types of disc position, and the diagnostic efficacy for the morphological parameters with significant group difference was analyzed to assess.

Results

The condylar volume (CV), condylar superficial area (CSA), superior joint space (SJS), and medial joint space (MJS) all exhibited obvious changes (P < 0.05). Additionally, they all had a reliable diagnostic accuracy in differentiating between normal disc position and ADD with an AUC value from 0.723 to 0.858. Among them, the CV, SJS, and MJS (P < 0.05) had a significantly positive impact on the groups by analysis of multivariate logistic ordinal regression model.

Conclusions

The CV, CSA, SJS, and MJS are significantly associated with different disc displacement types. The condyle in ADD exhibited altered dimensions. These could be promising biometric markers for assessing ADD.

Clinical relevance

The morphological changes of mandibular condyle and glenoid fossa were significantly influenced by the status of disc displacement, and condyles with disc displacement had three-dimensionally altered condylar dimensions, irrespective of age and sex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ADD:

anterior disc displacement

AJS:

anterior joint space

AUC:

area under the curve

CBCT:

cone beam computed tomography

CSA:

condylar superficial area

CSA%:

the proportion of the condylar superficial area in the articular fossa

CV:

condylar volume

CV%:

the proportion of the condylar volume in the articular fossa

FSA:

fossa superficial area

FV:

fossa volume

MJS:

medial joint space

MRI:

magnetic resonance imaging

NADP:

normal articular disc position

OR:

odds ratio

PJS:

posterior joint space

RDC/TMD:

Research Diagnostic Criteria for Temporomandibular Disorders

ROC:

receiver-operating characteristic

SJS:

superior joint space

TMJ:

temporomandibular joint

References

  1. Wieckiewicz M, Grychowska N, Wojciechowski K, Pelc A, Augustyniak M, Sleboda A, Zietek M (2014) Prevalence and correlation between TMD based on RDC/TMD diagnoses, oral parafunctions and psychoemotional stress in Polish university students. Biomed Res Int 2014:472346. https://doi.org/10.1155/2014/472346

    Article  PubMed  PubMed Central  Google Scholar 

  2. Habib SR, Al Rifaiy MQ, Awan KH, Alsaif A, Alshalan A, Altokais Y (2015) Prevalence and severity of temporomandibular disorders among university students in Riyadh. Saudi Dent J 27(3):125–130. https://doi.org/10.1016/j.sdentj.2014.11.009

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cai XY, Jin JM, Yang C (2011) Changes in disc position, disc length, and condylar height in the temporomandibular joint with anterior disc displacement: a longitudinal retrospective magnetic resonance imaging study. J Oral Maxillofac Surg 69(11):e340–e346. https://doi.org/10.1016/j.joms.2011.02.038

    Article  PubMed  Google Scholar 

  4. Rd L, Previdelli IT, Rd S, Iwaki LC, Grossmann E, Filho LI (2016 Oct) Correlation of gender and age with magnetic resonance imaging findings in patients with arthrogenic temporomandibular disorders: a cross-sectional study. Int J Oral Maxillofac Surg 45(10):1222–1228. https://doi.org/10.1016/j.ijom.2016.04.016

    Article  Google Scholar 

  5. Tanaka E, Detamore MS, Mercuri LG (2008) Degenerative disorders of the temporomandibular joint: etiology, diagnosis, and treatment. J Dent Res 87(4):296–307. https://doi.org/10.1177/154405910808700406

    Article  PubMed  Google Scholar 

  6. Lopes SL, Costa AL, Cruz AD, Li LM, de Almeida SM (2012) Clinical and MRI investigation of temporomandibular joint in major depressed patients. Dentomaxillofac Radiol 41(4):316–322. https://doi.org/10.1259/dmfr/27328352

    Article  PubMed  PubMed Central  Google Scholar 

  7. Langendoen J, Müller J, Jull GA (1997) Retrodiscal tissue of the temporomandibular joint: clinical anatomy and its role in diagnosis and treatment of arthropathies. Man Ther 2(4):191–198. https://doi.org/10.1054/math.1997.0299

    Article  PubMed  Google Scholar 

  8. Keith DA, Shaefer JR (2003) Encyclopedia of the neurological sciences. ACADEMIC PRESS, Elsevier Science Inc, pp 495–498 (online version http://info.sciencedirect.com/reference_works/)

    Book  Google Scholar 

  9. Buescher JJ (2007) Temporomandibular joint disorders. Am Fam Physician 76(10):1477–1482

    PubMed  Google Scholar 

  10. Gauer RL, Semidey MJ (2015) Diagnosis and treatment of temporomandibular disorders. Am Fam Physician 91(6):378–386

    PubMed  Google Scholar 

  11. Okeson JP, de Leeuw R (2011) Differential diagnosis of temporomandibular disorders and other orofacial pain disorders. Dent Clin North Am 55(1):105–120. https://doi.org/10.1016/j.cden.2010.08.007

    Article  PubMed  Google Scholar 

  12. Zakrzewska JM (2013) Differential diagnosis of facial pain and guidelines for management. Br J Anaesth 111(1):95–104. https://doi.org/10.1093/bja/aet125

    Article  PubMed  Google Scholar 

  13. Song H, Lee JY, Huh KH, Park JW (2020) Long-term changes of temporomandibular joint osteoarthritis on computed tomography. Sci Rep 10(1):6731. https://doi.org/10.1038/s41598-020-63493-8

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gundlach KK (2010) Ankylosis of the temporomandibular joint. J Craniomaxillofac Surg 38(2):122–130. https://doi.org/10.1016/j.jcms.2009.04.006

    Article  PubMed  Google Scholar 

  15. Movahed R, Mercuri LG (2015) Management of temporomandibular joint ankylosis. Oral Maxillofac Surg Clin North Am 27(1):27–35. https://doi.org/10.1016/j.coms.2014.09.003

    Article  PubMed  Google Scholar 

  16. Goh YC, Tan CC, Lim D (2020 Sep) Coronoid hyperplasia: a review. J Stomatol Oral Maxillofac Surg 121(4):397–403. https://doi.org/10.1016/j.jormas.2019.12.019

    Article  PubMed  Google Scholar 

  17. Farronato M, Lucchina AG, Mortellaro C, Fama A, Galbiati G, Farronato G, Maspero C (2019) Bilateral hyperplasia of the coronoid process in pediatric patients: what is the gold standard for treatment? J Craniofac Surg 30(4):1058–1063. https://doi.org/10.1097/SCS.0000000000004768

    Article  PubMed  Google Scholar 

  18. Taşkaya-Yilmaz N, Oğütcen-Toller M (2001) Magnetic resonance imaging evaluation of temporomandibular joint disc deformities in relation to type of disc displacement. J Oral Maxillofac Surg 59(8):860–865; discussion 865-6. https://doi.org/10.1053/joms.2001.25015

    Article  PubMed  Google Scholar 

  19. Lee PP, Stanton AR, Hollender LG (2017) Greater mandibular horizontal condylar angle is associated with temporomandibular joint osteoarthritis. Oral Surg Oral Med Oral Pathol Oral Radiol 123(4):502–507. https://doi.org/10.1016/j.oooo.2016.12.008

    Article  PubMed  Google Scholar 

  20. Torres MG, Crusoé-Rebello IM, Rosário M, Albuquerque MC, Campos PS (2016) Morphometric features of the mandibular condyle and association with disk abnormalities. Oral Surg Oral Med Oral Pathol Oral Radiol 121(5):566–572. https://doi.org/10.1016/j.oooo.2016.01.020

    Article  PubMed  Google Scholar 

  21. Westesson PL, Bifano JA, Tallents RH, Hatala MP (1991) Increased horizontal angle of the mandibular condyle in abnormal temporomandibular joints. A magnetic resonance imaging study. Oral Surg Oral Med Oral Pathol 72(3):359–363. https://doi.org/10.1016/0030-4220(91)90233-3

    Article  PubMed  Google Scholar 

  22. Larheim TA, Abrahamsson AK, Kristensen M, Arvidsson LZ (2015) Temporomandibular joint diagnostics using CBCT. Dentomaxillofac Radiol 44(1):20140235. https://doi.org/10.1259/dmfr.20140235

    Article  PubMed  Google Scholar 

  23. Reiter S, Goldsmith C, Emodi-Perlman A, Friedman-Rubin P, Winocur E (2012) Masticatory muscle disorders diagnostic criteria: the American Academy of Orofacial Pain versus the research diagnostic criteria/temporomandibular disorders (RDC/TMD). J Oral Rehabil 39(12):941–947. https://doi.org/10.1111/j.1365-2842.2012.02337.x

    Article  PubMed  Google Scholar 

  24. Li C, Liu X, Muhetaer B, Jumatai S, Gong Z Magnetic resonance imaging texture analysis of unilateral lateral pterygoid myospasm in patients with temporomandibular joint disorders: a pilot study. Digit Med [serial online] 2021 [cited 2022 9];7:2. Available from: http://www.digitmedicine.com/text.asp?2021/7/1/0/331949

  25. Tomas X, Pomes J, Berenguer J, Quinto L, Nicolau C, Mercader JM, Castro V (2006) MR imaging of temporomandibular joint dysfunction: a pictorial review. Radiographics 26(3):765–781. https://doi.org/10.1148/rg.263055091

    Article  PubMed  Google Scholar 

  26. Fu KY, Hu M, Yu Q, Yang C, Cheng Y, Long X, Zhang ZG, Liu HC (2020) Experts consensus on MRI examination specification and diagnostic criteria of temporomandibular joint disc displacement. Chinese J Stomatol 55(9):608–612. https://doi.org/10.3760/cma.j.cn112144-20200514-00268

    Article  Google Scholar 

  27. Fu KY, Hu M, Yu Q, Yang C, Cheng Y, Long X, Zhang ZG, Liu HC (2020) Experts consensus on cone-beam CT examination specification and diagnostic criteria of temporomandibular disorders. Chinese J Stomatol 55(9):613–616. https://doi.org/10.3760/cma.j.cn112144-20200514-00267

    Article  Google Scholar 

  28. Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15(2):155–163. https://doi.org/10.1016/j.jcm.2016.02.012

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liu MQ, Zhang XW, Fan WP, He SL, Wang YY, Chen ZY (2020) Functional changes of the lateral pterygoid muscle in patients with temporomandibular disorders: a pilot magnetic resonance images texture study. Chin Med J (Engl) 133(5):530–536. https://doi.org/10.1097/CM9.0000000000000658

    Article  PubMed  Google Scholar 

  30. Dupuy-Bonafé I, Otal P, Montal S, Bonafé A, Maldonado IL (2014) Biometry of the temporomandibular joint using computerized tomography. Surg Radiol Anat 36(9):933–939. https://doi.org/10.1007/s00276-014-1277-7

    Article  PubMed  Google Scholar 

  31. Zhang Y, Xu X, Liu Z (2017) Comparison of morphologic parameters of temporomandibular joint for asymptomatic subjects using the two-dimensional and three-dimensional measuring methods. J Healthc Eng 2017:5680708. https://doi.org/10.1155/2017/5680708

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang YL, Song JL, Xu XC, Zheng LL, Wang QY, Fan YB, Liu Z (2016) Morphologic analysis of the temporomandibular joint between patients with facial asymmetry and asymptomatic subjects by 2D and 3D evaluation: a preliminary study. Medicine (Baltimore) 95(13):e3052. https://doi.org/10.1097/MD.0000000000003052

    Article  PubMed  Google Scholar 

  33. Kurita H, Uehara S, Yokochi M, Nakatsuka A, Kobayashi H, Kurashina K (2006) A long-term follow-up study of radiographically evident degenerative changes in the temporomandibular joint with different conditions of disk displacement. Int J Oral Maxillofac Surg 35(1):49–54. https://doi.org/10.1016/j.ijom.2005.04.004

    Article  PubMed  Google Scholar 

  34. Ueki K, Moroi A, Sotobori M, Ishihara Y, Marukawa K, Yoshizawa K, Kato K, Kawashiri S (2012) Changes in temporomandibular joint and ramus after sagittal split ramus osteotomy in mandibular prognathism patients with and without asymmetry. J Craniomaxillofac Surg 40(8):821–827. https://doi.org/10.1016/j.jcms.2012.03.003

    Article  PubMed  Google Scholar 

  35. Cevidanes LH, Hajati AK, Paniagua B, Lim PF, Walker DG, Palconet G, Nackley AG, Styner M, Ludlow JB, Zhu H, Phillips C (2010) Quantification of condylar resorption in temporomandibular joint osteoarthritis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 110(1):110–117. https://doi.org/10.1016/j.tripleo.2010.01.008

    Article  PubMed  PubMed Central  Google Scholar 

  36. Goncalves JR, Wolford LM, Cassano DS, da Porciuncula G, Paniagua B, Cevidanes LH (2013) Temporomandibular joint condylar changes following maxillomandibular advancement and articular disc repositioning. J Oral Maxillofac Surg 71(10):1759.e1–1759.15. https://doi.org/10.1016/j.joms.2013.06.209

    Article  PubMed  Google Scholar 

  37. Yang HJ, Hwang SJ (2014) Change in condylar position in posterior bending osteotomy minimizing condylar torque in BSSRO for facial asymmetry. J Craniomaxillofac Surg 42(4):325–332. https://doi.org/10.1016/j.jcms.2013.05.021

    Article  PubMed  Google Scholar 

  38. Chang MS, Choi JH, Yang IH, An JS, Heo MS, Ahn SJ (2018) Relationships between temporomandibular joint disk displacements and condylar volume. Oral Surg Oral Med Oral Pathol Oral Radiol 125(2):192–198. https://doi.org/10.1016/j.oooo.2017.11.001

    Article  PubMed  Google Scholar 

  39. Ahn SJ, Kim TW, Lee DY, Nahm DS (2006) Evaluation of internal derangement of the temporomandibular joint by panoramic radiographs compared with magnetic resonance imaging. Am J Orthod Dentofacial Orthop 129(4):479–485. https://doi.org/10.1016/j.ajodo.2005.12.009

    Article  PubMed  Google Scholar 

  40. Rao VM, Babaria A, Manoharan A, Mandel S, Gottehrer N, Wank H, Grosse S (1990) Altered condylar morphology associated with disc displacement in TMJ dysfunction: observations by MRI. Magn Reson Imaging 8(3):231–235. https://doi.org/10.1016/0730-725x(90)90094-i

    Article  PubMed  Google Scholar 

  41. Cevidanes LH, Walker D, Schilling J, Sugai J, Giannobile W, Paniagua B, Benavides E, Zhu H, Marron JS, Jung BT, Baranowski D, Rhodes J, Nackley A, Lim PF, Ludlow JB, Nguyen T, Goncalves JR, Wolford L, Kapila S, Styner M (2014) 3D osteoarthritic changes in TMJ condylar morphology correlates with specific systemic and local biomarkers of disease. Osteoarthr Cartil 22(10):1657–1667. https://doi.org/10.1016/j.joca.2014.06.014

    Article  Google Scholar 

  42. Fernández Sanromán J, Gómez González JM, del Hoyo JA (1998) Relationship between condylar position, dentofacial deformity and temporomandibular joint dysfunction: an MRI and CT prospective study. J Craniomaxillofac Surg 26(1):35–42. https://doi.org/10.1016/s1010-5182(98)80033-4

    Article  PubMed  Google Scholar 

  43. Ueki K, Nakagawa K, Takatsuka S, Shimada M, Marukawa K, Takazakura D, Yamamoto E (2000) Temporomandibular joint morphology and disc position in skeletal class III patients. J Craniomaxillofac Surg 28(6):362–368. https://doi.org/10.1054/jcms.2000.0181

    Article  PubMed  Google Scholar 

  44. Nebbe B, Major PW, Prasad NG (1998) Adolescent female craniofacial morphology associated with advanced bilateral TMJ disc displacement. Eur J Orthod 20(6):701–712. https://doi.org/10.1093/ejo/20.6.701

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The deepest appreciation is for Dr. Tao Bu (Parexel International) who provided a professional support for the statistics.

Data availability

The analyzed data sets generated during the study are available from the corresponding author on reasonable request.

Funding

This study was funded by the National Natural Science Foundation of China (grant number: 82160189); Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China (grant number: 2022kqhm008); Tianshan Innovation Team of Xinjiang Uygur Autonomous Region (grant number: 2021D14001); and Open Project of Shaanxi Clinical Medical Research Center for Dental and Maxillofacial Diseases—School of Stomatology, Xi’an Jiaotong University (grant number 2020YHJB01).

Author information

Authors and Affiliations

Authors

Contributions

Prof. Gong conceptualized and designed the study and critically revised the manuscript for important intellectual content. Dr. Li conceptualized the study, designed the data collection, trained for measurement, optimized the statistical methods, and drafted the manuscript. Prof. Liu and Li supported MRI information extraction and interpreted the images and coordinated and supervised imaging data acquisition. X. Liu and Prof. Ling collected and integrated the clinical materials, took in charge of follow-up assignment, carried out the statistical analyses, and reviewed the manuscript.

All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work. The requirements for authorship as stated earlier in this document have been met, and each author believes that the manuscript represents honest work.

Corresponding authors

Correspondence to Chen-xi Li or Zhong-cheng Gong.

Ethics declarations

Ethics approval

The present study was approved by the Ethics Committee of the First Affiliated Hospital of Xinjiang Medical University. Procedures operated in this research were completed in keeping with the standards set out in the Announcement of Helsinki and laboratory guidelines of research in China.

Consent for publication

Written consent was obtained by all patients, and they were willing to join our study and publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Cx., Liu, H., Gong, Zc. et al. Effects of osseous structure based on three-dimensional reconstructive imaging evaluation in the assessment of temporomandibular joint disc position. Clin Oral Invest 27, 1449–1463 (2023). https://doi.org/10.1007/s00784-023-04936-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-023-04936-0

Keywords

Navigation