Skip to main content

Advertisement

Log in

Influence of different mucosal phenotype on early and long-term marginal bone loss around implants: a systematic review and meta-analysis

  • Review
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

To investigate the influence of different mucosal phenotypes on peri-implant marginal bone loss.

Materials and methods

The search was conducted in five databases including PubMed, Embase, Cochrane, Scopus, and Web of Science (until 1st Sept. 2022) to identify relevant clinical studies. Potentially relevant journals were also manually searched. Two reviewers independently screened studies, extracted data, and evaluated the quality of the studies. Prospective clinical trials and observational studies investigating peri-implant marginal bone loss in thick-mucosa and thin-mucosa groups were included.

Results

A total of 14 studies were included in this systematic review. Results of the meta-analysis revealed a weighted mean difference of 0.38 mm for marginal bone loss between thick- and thin-mucosa groups (95% confidence interval = 0.02–0.74, P = 0.002). Statistical significance existed in short-term (follow-up ≤ 1 year) data (WMD = 0.41 mm, 95%CI = 0.11–0.70, P = 0.007), but not in long term (follow-up ≥ 3 y) data (WMD = 0.17 mm, 95%CI = – 0.02–0.36, P = 0.07). Survival rate revealed no difference between thick and thin mucosa groups. In subgroup analyses, a positive association between thick mucosa and less marginal bone loss was found in the non-submerged group, cement-retained group, and bone-level group.

Conclusions

A significantly less marginal bone loss occurred in implants with thick mucosa than with thin mucosa in the short term, whereas no significant difference was observed in the long term. Due to the substantial heterogeneity and limited long-term data, further high-quality evidence is warranted to confirm the results.

Clinical relevance

Clinicians are advised to use caution in treating patients with thin mucosa and adhere closely to indications and protocols to minimize marginal bone loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data that support the findings of this study are openly available in MEDLINE at https://www.nlm.nih.gov/medline/index.html, EMBASE at https://www.embase.com/landing?status=yellow, Cochrane at https://www.cochranelibrary.com/, Scopus at https://www.scopus.com/home.uri and Wed of Science at https://clarivate.com/webofsciencegroup/solutions/web-of-science/.

References

  1. Schwarz F, Ramanauskaite A (2000) It is all about peri-implant tissue health. Periodontol 2022(88):9–12. https://doi.org/10.1111/PRD.12407

    Article  Google Scholar 

  2. Duong HY, Roccuzzo A, Stähli A, Salvi GE, Lang NP, Sculean A (2000) Oral health-related quality of life of patients rehabilitated with fixed and removable implant-supported dental prostheses. Periodontol 2022(88):201–237. https://doi.org/10.1111/PRD.12419

    Article  Google Scholar 

  3. Misch CE, Perel ML, Wang HL et al (2008) Implant success, survival, and failure: the International Congress of Oral Implantologists (ICOI) Pisa Consensus Conference. Implant Dent 17:5–15. https://doi.org/10.1097/ID.0B013E3181676059

    Article  PubMed  Google Scholar 

  4. Papaspyridakos P, Chen CJ, Singh M, Weber HP, Gallucci GO (2012) Success criteria in implant dentistry: a systematic review. J Dent Res 91:242–248. https://doi.org/10.1177/0022034511431252

    Article  PubMed  Google Scholar 

  5. Howe MS, Keys W, Richards D (2019) Long-term (10-year) dental implant survival: a systematic review and sensitivity meta-analysis. J Dent 84:9–21. https://doi.org/10.1016/J.JDENT.2019.03.008

    Article  PubMed  Google Scholar 

  6. Sailer I, Karasan D, Todorovic A, Ligoutsikou M, Pjetursson BE (2000) Prosthetic failures in dental implant therapy. Periodontol 2022(88):130–144. https://doi.org/10.1111/PRD.12416

    Article  Google Scholar 

  7. Albrektsson T, Chrcanovic B, Östman PO, Sennerby L (2000) Initial and long-term crestal bone responses to modern dental implants. Periodontol 2017(73):41–50. https://doi.org/10.1111/PRD.12176

    Article  Google Scholar 

  8. Di Gianfilippo R, Valente NA, Toti P et al (2020) Influence of implant mucosal thickness on early bone loss: a systematic review with meta-analysis. J Periodontal Implant Sci 50. https://doi.org/10.5051/JPIS.1904440222

  9. Naseri R, Yaghini J, Feizi A (2020) Levels of smoking and dental implants failure: a systematic review and meta-analysis. J Clin Periodontol 47:518–528. https://doi.org/10.1111/JCPE.13257

    Article  PubMed  Google Scholar 

  10. Berglundh T, Lindhe J (1996) Dimension of the periimplant mucosa. Biological width revisited. J Clin Periodontol 23:971–973

    Article  PubMed  Google Scholar 

  11. Vervaeke S, Dierens M, Besseler J, De Bruyn H (2014) The influence of initial soft tissue thickness on peri-implant bone remodeling. Clin Implant Dent Relat Res 16:238–247. https://doi.org/10.1111/J.1708-8208.2012.00474.X

    Article  PubMed  Google Scholar 

  12. Vervaeke S, Matthys C, Nassar R et al (2018) Adapting the vertical position of implants with a conical connection in relation to soft tissue thickness prevents early implant surface exposure: a 2-year prospective intra-subject comparison. J Clin Periodontol 45:605–612. https://doi.org/10.1111/JCPE.12871

    Article  PubMed  Google Scholar 

  13. Linkevicius T, Puisys A, Linkeviciene L et al (2015a) Crestal bone stability around implants with horizontally matching connection after soft tissue thickening: a prospective clinical trial. Clin Implant Dent Relat Res 17:497–508. https://doi.org/10.1111/CID.12155

    Article  PubMed  Google Scholar 

  14. Linkevicius T, Puisys A, Linkevicius R et al (2020) The influence of submerged healing abutment or subcrestal implant placement on soft tissue thickness and crestal bone stability. A 2-year randomized clinical trial. Clin Implant Dent Relat Res 22:497–506. https://doi.org/10.1111/CID.12903

    Article  PubMed  Google Scholar 

  15. de Siqueira RAC, Savaget Gonçalves Junior R, dos Santos PGF et al (2020) Effect of different implant placement depths on crestal bone levels and soft tissue behavior: a 5-year randomized clinical trial. Clin Oral Implants Res 31:282–293. https://doi.org/10.1111/CLR.13569

    Article  PubMed  Google Scholar 

  16. Garaicoa-Pazmino C, Mendonça G, Ou A et al (2021) Impact of mucosal phenotype on marginal bone levels around tissue level implants: a prospective controlled trial. J Periodontol 92:771–783. https://doi.org/10.1002/JPER.20-0458

    Article  PubMed  Google Scholar 

  17. De Rouck T, Eghbali R, Collys K et al (2009) The gingival biotype revisited: transparency of the periodontal probe through the gingival margin as a method to discriminate thin from thick gingiva. J Clin Periodontol 36:428–433. https://doi.org/10.1111/J.1600-051X.2009.01398.X

    Article  PubMed  Google Scholar 

  18. Bittner N, Schulze-Späte U, Silva C et al (2019) Changes of the alveolar ridge dimension and gingival recession associated with implant position and tissue phenotype with immediate implant placement: a randomised controlled clinical trial. Int J Oral Implantol (Berlin. Ger) 12:469–480

    Google Scholar 

  19. Gharpure AS, Latimer JM, Aljofi FE et al (2021) Role of thin gingival phenotype and inadequate keratinized mucosa width. J Periodontol 92:1687–1696. https://doi.org/10.1002/JPER.20-0792

    Article  PubMed  Google Scholar 

  20. Malpartida-Carrillo V, Tinedo-Lopez PL, Guerrero ME, Amaya-Pajares SP, Özcan M, Rösing CK (2021) Periodontal phenotype: a review of historical and current classifications evaluating different methods and characteristics. J Esthet Restor Dent 33:432–445. https://doi.org/10.1111/JERD.12661

    Article  PubMed  Google Scholar 

  21. Seyssens L, De Lat L, Cosyn J (2021) Immediate implant placement with or without connective tissue graft: a systematic review and meta-analysis. J Clin Periodontol 48:284–301. https://doi.org/10.1111/JCPE.13397

    Article  PubMed  Google Scholar 

  22. Romandini M, Ruales-Carrera E, Sadilina S, Hämmerle CHF, Sanz M (2022) Minimal invasiveness at dental implant placement: a systematic review with meta-analyses on flapless fully guided surgery. Periodontol 2000. https://doi.org/10.1111/PRD.12440

  23. Chackartchi T, Romanos GE, Sculean A (2000) Soft tissue-related complications and management around dental implants. Periodontol 2019(81):124–138. https://doi.org/10.1111/PRD.12287

    Article  Google Scholar 

  24. Linkevicius T, Apse P, Grybauskas S, Puisys A (2010) Influence of thin mucosal tissues on crestal bone stability around implants with platform switching: a 1-year pilot study. J Oral Maxillofac Surg 68:2272–2277. https://doi.org/10.1016/J.JOMS.2009.08.018

    Article  PubMed  Google Scholar 

  25. Pico A, Martín-Lancharro P, Caneiro L et al (2019) Influence of abutment height and implant depth position on interproximal peri-implant bone in sites with thin mucosa: a 1-year randomized clinical trial. Clin Oral Implants Res 30:595–602. https://doi.org/10.1111/CLR.13443

    Article  PubMed  Google Scholar 

  26. Díaz-Sánchez M, Soto-Peñaloza D, Peñarrocha-Oltra D, Peñarrocha-Diago M (2019) Influence of supracrestal tissue attachment thickness on radiographic bone level around dental implants: a systematic review and meta-analysis. J Periodontal Res 54:573–588. https://doi.org/10.1111/JRE.12663

    Article  PubMed  Google Scholar 

  27. Suárez-López del Amo F, Lin G-H, Monje A et al (2016) Influence of soft tissue thickness on peri-implant marginal bone loss: a systematic review and meta-analysis. J Periodontol 87:690–699. https://doi.org/10.1902/JOP.2016.150571

    Article  PubMed  Google Scholar 

  28. Prati C, Zamparini F, Canullo L et al (2020) Factors affecting soft and hard tissues around two-piece transmucosal implants: a 3-year prospective cohort study. Int J Oral Maxillofac Implants 35:1022–1036. https://doi.org/10.11607/JOMI.7778

    Article  PubMed  Google Scholar 

  29. Sun P, Yu D, Luo X et al (2022) The effect of initial biologic width on marginal bone loss: a retrospective study. Int J Oral Maxillofac Implants 37:190–198. https://doi.org/10.11607/JOMI.9169

    Article  PubMed  Google Scholar 

  30. Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6. https://doi.org/10.1371/JOURNAL.PMED.1000097

  31. Higgins JP, Green S (2011) Cochrane handbook for systematic reviews of interventions version 5.1.0. The Cochrane Collaboration. www.cochrane-handbook.org. Accessed 12 Nov 2022

  32. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M, Tugwell P (2011) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in metaanalyses. Ottawa Hospital Research Institute. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed 12 Nov 2022

  33. Pan A, Sun Q, Okereke OI et al (2011) Depression and risk of stroke morbidity and mortality: a meta-analysis and systematic review. JAMA 306:1241–1249. https://doi.org/10.1001/JAMA.2011.1282

    Article  PubMed  PubMed Central  Google Scholar 

  34. de Siqueira RAC, Fontão FNGK, de Mattias Sartori IA et al (2017) Effect of different implant placement depths on crestal bone levels and soft tissue behavior: a randomized clinical trial. Clin Oral Implants Res 28:1227–1233. https://doi.org/10.1111/CLR.12946

    Article  PubMed  Google Scholar 

  35. Nohra J, Dagher M, Matni G et al (2018) Effect of primary stability and soft- and hard-tissue thickness on marginal bone loss: a prospective pilot study. Implant Dent 27:542–546. https://doi.org/10.1097/ID.0000000000000810

    Article  PubMed  Google Scholar 

  36. Puisys A, Linkevicius T (2015) The influence of mucosal tissue thickening on crestal bone stability around bone-level implants. A prospective controlled clinical trial. Clin Oral Implants Res 26:123–129. https://doi.org/10.1111/CLR.12301

    Article  PubMed  Google Scholar 

  37. Canullo L, Camacho-Alonso F, Tallarico M et al (2017) Mucosa thickness and peri-implant crestal bone stability: a clinical and histologic prospective cohort trial. Int J Oral Maxillofac Implants 32:675–681. https://doi.org/10.11607/JOMI.5349

    Article  PubMed  Google Scholar 

  38. Novák Z, Strnad J, Nesvadba R et al (2019) Marginal bone response of submerged and non-submerged osteoconductive alkali-etched implants in thick and thin biotypes: a 2-year clinical follow-up study. Int J Oral Maxillofac Implants 34:1184–1194. https://doi.org/10.11607/JOMI.7399

    Article  PubMed  Google Scholar 

  39. Bhat P, Thakur S, Kulkarni S (2015) The influence of soft tissue biotype on the marginal bone changes around dental implants: a 1-year prospective clinico-radiological study. J Indian Soc Periodontol 19:640–644. https://doi.org/10.4103/0972-124X.168489

    Article  PubMed  PubMed Central  Google Scholar 

  40. Spinato S, Stacchi C, Lombardi T et al (2019) Biological width establishment around dental implants is influenced by abutment height irrespective of vertical mucosal thickness: a cluster randomized controlled trial. Clin Oral Implants Res 30:649–659. https://doi.org/10.1111/CLR.13450

    Article  PubMed  Google Scholar 

  41. Spinato S, Stacchi C, Lombardi T et al (2020) Influence of abutment height and vertical mucosal thickness on early marginal bone loss around implants: a randomised clinical trial with an 18-month post-loading clinical and radiographic evaluation. Int J oral Implantol (Berlin. Ger 13:279–290

    Google Scholar 

  42. van Eekeren P, van Elsas P, Tahmaseb A, Wismeijer D (2017) The influence of initial mucosal thickness on crestal bone change in similar macrogeometrical implants: a prospective randomized clinical trial. Clin Oral Implants Res 28:214–218. https://doi.org/10.1111/CLR.12784

    Article  PubMed  Google Scholar 

  43. Zheng Z, Ao X, Xie P et al (2021) The biological width around implant. J Prosthodont Res 65:11–18. https://doi.org/10.2186/JPR.JPOR_2019_356

    Article  PubMed  Google Scholar 

  44. Tomasi C, Tessarolo F, Caola I, Wennström J, Nollo G, Berglundh T (2014) Morphogenesis of peri-implant mucosa revisited: an experimental study in humans. Clin Oral Implants Res 25:997–1003. https://doi.org/10.1111/CLR.12223

    Article  PubMed  Google Scholar 

  45. Canullo L, Penarrocha Oltra D, Pesce P, Zarauz C, Lattanzio R, Penarrocha Diago M et al (2021) Soft tissue integration of different abutment surfaces: an experimental study with histological analysis. Clin Oral Implants Res 32:928–940. https://doi.org/10.1111/CLR.13782

    Article  PubMed  Google Scholar 

  46. Thoma DS, Gil A, Hämmerle CHF, Jung RE (2000) Management and prevention of soft tissue complications in implant dentistry. Periodontol 2022(88):116–129. https://doi.org/10.1111/PRD.12415

    Article  Google Scholar 

  47. Slagter KW, den Hartog L, Bakker NA et al (2014) Immediate placement of dental implants in the esthetic zone: a systematic review and pooled analysis. J Periodontol 85:e241–e250. https://doi.org/10.1902/JOP.2014.130632

    Article  PubMed  Google Scholar 

  48. Linkevicius T, Puisys A, Steigmann M et al (2015b) Influence of vertical soft tissue thickness on crestal bone changes around implants with platform switching: a comparative clinical study. Clin Implant Dent Relat Res 17:1228–1236. https://doi.org/10.1111/CID.12222

    Article  PubMed  Google Scholar 

  49. Puzio M, Hadzik J, Błaszczyszyn A et al (2020) Soft tissue augmentation around dental implants with connective tissue graft (CTG) and xenogenic collagen matrix (XCM). 1-year randomized control trail. Ann Anat 230. https://doi.org/10.1016/J.AANAT.2020.151484

  50. King GN, Hermann JS, Schoolfield JD et al (2002) Influence of the size of the microgap on crestal bone levels in non-submerged dental implants: a radiographic study in the canine mandible. J Periodontol 73:1111–1117. https://doi.org/10.1902/JOP.2002.73.10.1111

    Article  PubMed  Google Scholar 

  51. Troiano G, Lo Russo L, Canullo L et al (2018) Early and late implant failure of submerged versus non-submerged implant healing: a systematic review, meta-analysis and trial sequential analysis. J Clin Periodontol 45:613–623. https://doi.org/10.1111/JCPE.12890

    Article  PubMed  Google Scholar 

  52. Sánchez-Siles M, Muñoz-Cámara D, Salazar-Sánchez N et al (2018) Crestal bone loss around submerged and non-submerged implants during the osseointegration phase with different healing abutment designs: a randomized prospective clinical study. Clin Oral Implants Res 29:808–812. https://doi.org/10.1111/CLR.12981

    Article  PubMed  Google Scholar 

Download references

Funding

The work was funded by grants from the National Natural Science Foundation of China (82201072), the project of cadre health of Jiangsu Commission of health (BJ19033) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, 2018–87).

Author information

Authors and Affiliations

Authors

Contributions

Pengzhou Tang: Conceptualization, Data curation, Formal analysis, Writing—original draft

Ziyan Meng: Conceptualization, Methodology, Writing—review and editing

Xiao Song: Methodology, Data curation, Software, Validation

Jiaxin Huang: Validation, Visualization

Chuan Su: Writing—review and editing

Lu Li: Conceptualization, Funding acquisition, Supervision, Project administration

Corresponding author

Correspondence to Lu Li.

Ethics declarations

Ethical approval

No ethical approval was required for this study since it was a systematic review.

Informed consent

For this type of study, formal consent is not required.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The corresponding author Lu Li received funding from the National Natural Science Foundation of China, the project of cadre health of the Jiangsu Commission of health, and the Priority Academic Program Development of Jiangsu Higher Education Institutions. The other authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 98 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, P., Meng, Z., Song, X. et al. Influence of different mucosal phenotype on early and long-term marginal bone loss around implants: a systematic review and meta-analysis. Clin Oral Invest 27, 1391–1407 (2023). https://doi.org/10.1007/s00784-023-04902-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-023-04902-w

Keywords

Navigation