Skip to main content

Advertisement

Log in

Effect of chitosan irrigant solutions on the release of bioactive proteins from root dentin

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

To identify the effect of two chitosan solutions on the release of root dentin matrix proteins and to describe the chemical changes observed following conditioning with chelating agents.

Materials and methods

The release of dentin sialoprotein (DSP), transforming growth factor-beta 1 (TGF-β1), vascular endothelial growth factor (VEGF), and platelet-derived growth factor-BB (PDGF-BB) with different chelating agents, including ethylenediaminetetraacetic acid (EDTA), chitosan solution (CS), and nanoparticulate chitosan (CSnp), was investigated. DSP was quantified using an enzyme-linked immunosorbent assay (ELISA). TGF-β1, VEGF, and PDGF-BB were quantified using a cytokine bead panel (CBA). Raman spectroscopy was performed to identify surface chemical changes. Statistical analysis was performed using Kruskal–Wallis test with Mann–Whitney–Wilcoxon rank-sum test (p < 0.05).

Results

TGF-β1, VEGF, and DSP solubilized in all irrigants tested. CSnp showed the highest concentration of DSP. PDGF-BB did not exceed the detection limits. Raman spectroscopy revealed a decrease in the phosphate and carbonate peaks, representing the chelating effect of EDTA, CS, and CSnp. Additionally, CSnp showed the greatest preservation of the amide I and III content.

Conclusion

Proteins can be released from dentin via EDTA, CS, and CSnp conditioning. Raman spectroscopic revealed changes in the inorganic content of the root dentin after chelation. Furthermore, use of CSnp facilitated a preservation of the organic content.

Clinical relevance

Chelation allows the release of proteins, justifying the use of chelating agents in regenerative endodontics. The chitosan–dentin matrix interaction also promotes the protection of the organic content as an additional benefit to its protein releasing effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xie Z, Shen Z, Zhan P, Yang J, Huang Q, Huang S, Chen L, Lin Z (2021) Functional dental pulp regeneration: basic research and clinical translation. Int J Mol Sci 22:8991. https://doi.org/10.3390/ijms22168991

    Article  Google Scholar 

  2. Elnawam H, Abdelmougod M, Mobarak A, Hussein M, Aboualmakarem H, Girgis M, El Backly R (2022) Regenerative endodontics and minimally invasive dentistry: intertwining paths crossing over into clinical translation. Front Bioeng Biotechnol 8(10):837639. https://doi.org/10.3389/fbioe.2022.837639

    Article  Google Scholar 

  3. Smith JG, Smith AJ, Shelton RM, Cooper PR (2015) Dental pulp cell behavior in biomimetic environments. J Dent Res 94:1552–1559. https://doi.org/10.1177/0022034515599767

    Article  Google Scholar 

  4. Huang X, Li Z, Liu A, Liu X, Guo H, Wu M, Yang X, Han B, Xuan K (2021) Microenvironment influences odontogenic mesenchymal stem cells mediated dental pulp regeneration. Front Physiol 12:656588. https://doi.org/10.3389/fphys.2021.656588

    Article  Google Scholar 

  5. Jeeruphan T, Jantarat J, Yanpiset K, Suwannapan L, Khewsawai P, Hargreaves KM (2012) Mahidol study 1: comparison of radiographic and survival outcomes of immature teeth treated with either regenerative endodontic or apexification methods: a retrospective study. J Endod 38:1330–1336. https://doi.org/10.1016/j.joen.2012.06.028

    Article  Google Scholar 

  6. Jung C, Kim S, Sun T, Cho YB, Song M (2019) Pulp-dentin regeneration: current approaches and challenges. J Tissue Eng 10:2041731418819263. https://doi.org/10.1177/2041731418819263

    Article  Google Scholar 

  7. Zhang X, Li H, Sun J, Luo X, Yang H, Xie L, Yang B, Guo W, Tian W (2017) Cell-derived micro-environment helps dental pulp stem cells promote dental pulp regeneration. Cell Prolif 50:e12361. https://doi.org/10.1111/cpr.12361

    Article  Google Scholar 

  8. Dung SZ, Gregory RL, Li Y, Stookey GK (1995) Effect of lactic acid and proteolytic enzymes on the release of organic matrix components from human root dentin. Caries Res 29:483–489. https://doi.org/10.1159/000262119

    Article  Google Scholar 

  9. Widbiller M, Schweikl H, Bruckmann A, Rosendahl A, Hochmuth E, Lindner SR, Buchalla W, Galler KM (2019) Shotgun proteomics of human dentin with different prefractionation methods. Sci Rep 9:4457. https://doi.org/10.1038/s41598-019-41144-x

    Article  Google Scholar 

  10. Kim JY, Xin X, Moioli EK, Chung J, Lee CH, Chen M, Fu SY, Koch PD, Mao JJ (2010) Regeneration of dental-pulp-like tissue by chemotaxis-induced cell homing. Tissue Eng Part A 16:3023–3031. https://doi.org/10.1089/ten.tea.2010.0181

    Article  Google Scholar 

  11. Srisuwan T, Wattanapakkavong K (2021) Direct effect of transforming growth factor-beta 1 (TGF-β1) on human apical papilla cell proliferation and mineralisation. Aust Endod J 48:322–330. https://doi.org/10.1111/aej.12572

    Article  Google Scholar 

  12. Zhao S, Sloan AJ, Murray PE, Lumley PJ, Smith AJ (2000) Ultrastructural localisation of TGF-beta exposure in dentine by chemical treatment. Histochem J 32:489–494. https://doi.org/10.1023/a:1004100518245

    Article  Google Scholar 

  13. Zhang M, Jiang F, Zhang X, Wang S, Jin Y, Zhang W, Jiang X (2017) The effects of platelet-derived growth factor-BB on human dental pulp stem cells mediated dentin-pulp complex regeneration. Stem Cells Transl Med 6:2126–2134. https://doi.org/10.1002/sctm.17-0033

    Article  Google Scholar 

  14. Matsushita K, Motani R, Sakuta T, Yamaguchi N, Koga T, Matsuo K, Nagaoka S, Abeyama K, Maruyama I, Torii M (2000) The role of vascular endothelial growth factor in human dental pulp cells: induction of chemotaxis, proliferation, and differentiation and activation of the AP-1-dependent signaling pathway. J Dent Res 79:1596–1603. https://doi.org/10.1177/00220345000790081201

    Article  Google Scholar 

  15. Yuan GH, Yang GB, Wu LA, Chen Z, Chen S (2010) Potential role of dentin sialoprotein by inducing dental pulp mesenchymal stem cell differentiation and mineralization for dental tissue repair. Dent Hypotheses 1:69–75. https://doi.org/10.5436/j.dehy.2010.1.00012

    Article  Google Scholar 

  16. Wigler R, Kaufman AY, Lin S, Steinbock N, Hazan-Molina H, Torneck CD (2013) Revascularization: a treatment for permanent teeth with necrotic pulp and incomplete root development. J Endod Mar 39(3):319–26

    Article  Google Scholar 

  17. Galler KM, Buchalla W, Hiller KA, Federlin M, Eidt A, Schiefersteiner M, Schmalz G (2015) Influence of root canal disinfectants on growth factor release from dentin. J Endod 41:363–368. https://doi.org/10.1016/j.joen.2014.11.021

    Article  Google Scholar 

  18. Tavares S, Pintor A, Mourão CFAB, Magno M, Montemezzi P, Sacco R, Alves G, Scelza MZ (2021) Effect of different root canal irrigant solutions on the release of dentin-growth factors: a systematic review and meta-analysis. Materials (Basel) 14:5829. https://doi.org/10.3390/ma14195829

    Article  Google Scholar 

  19. Aksel H, Albanyan H, Bosaid F, Azim AA (2020) Dentin conditioning protocol for regenerative endodontic procedures. J Endod 46:1099–1104. https://doi.org/10.1016/j.joen.2020.05.010

    Article  Google Scholar 

  20. Fong D, Duceppe N, Hoemann CD (2017) Mesenchymal stem cell detachment with trace trypsin is superior to EDTA for in vitro chemotaxis and adhesion assays. Biochem Biophys Res Commun 484:656–661. https://doi.org/10.1016/j.bbrc.2017.01.171

    Article  Google Scholar 

  21. Gu LS, Huang XQ, Griffin B, Bergeron BR, Pashley DH, Niu LN, Tay FR (2017) Primum non nocere - the effects of sodium hypochlorite on dentin as used in endodontics. Acta Biomater 61:144–156. https://doi.org/10.1016/j.actbio.2017.08.008

    Article  Google Scholar 

  22. Hashmi A, Zhang X, Kishen A (2019) Impact of dentin substrate modification with chitosan-hydroxyapatite precursor nanocomplexes on sealer penetration and tensile strength. J Endod 45(7):935–942. https://doi.org/10.1016/j.joen.2019.03.021

    Article  Google Scholar 

  23. Wu S, Zhou Y, Yu Y, Zhou X, Du W, Wan M, Fan Y, Zhou X, Xu X, Zheng L (2019) Evaluation of chitosan hydrogel for sustained delivery of VEGF for odontogenic differentiation of dental pulp stem cells. Stem Cells Int 2019:1515040. https://doi.org/10.1155/2019/1515040

    Article  Google Scholar 

  24. Kishen A, Shrestha S, Shrestha A, Cheng C, Goh C (2016) Characterizing the collagen stabilizing effect of crosslinked chitosan nanoparticles against collagenase degradation. Dent Mater 32(8):968–77. https://doi.org/10.1016/j.dental.2016.05.005

    Article  Google Scholar 

  25. El-Hady A, Kamel W, Farid M, Sabry D (2021) Efficacy of chitosan as final irrigating solution on TGF-β1 release from root canal dentin and its effect on dental pulp stem cells response. Al-Azhar Dental J Girls 8(2-A):231–241. https://doi.org/10.21608/adjg.2021.28468.1246

    Article  Google Scholar 

  26. Pang NS, Lee SJ, Kim E, Shin DM, Cho SW, Park W, Zhang X, Jung IY (2014) Effect of EDTA on attachment and differentiation of dental pulp stem cells. J Endod 40(6):811–7. https://doi.org/10.1016/j.joen.2013.09.007

    Article  Google Scholar 

  27. ISO/TS 11405 (2015) Dentistry — testing of adhesion to tooth structure. International Organisation for Standardization: Geneva, Switzerland

  28. Silva PV, Guedes DF, Nakadi FV, Pécora JD, Cruz-Filho AM (2013) Chitosan: a new solution for removal of smear layer after root canal instrumentation. Int Endod J 46:332–338. https://doi.org/10.1111/j.1365-2591.2012.02119.x

    Article  Google Scholar 

  29. de Moura MR, Aouada FA, Avena-Bustillos RJ, McHugh TH, Krochta JM, Mattoso LHC (2009) Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. J Food Eng 92:448–453. https://doi.org/10.1016/j.jfoodeng.2008.12.015

    Article  Google Scholar 

  30. Kassaee M, Hosseini S, Elahi SH (2016) A new nano-chitosan irrigant with superior smear layer removal and penetration. Nanochem Res 1:150–156. https://doi.org/10.7508/NCR.2016.02.002

    Article  Google Scholar 

  31. Khalid M, Bora T, Ghaithi AA, Thukral S, Dutta J (2018) Raman spectroscopy detects changes in bone mineral quality and collagen cross-linkage in Staphylococcus infected human bone. Sci Rep 8:9417. https://doi.org/10.1038/s41598-018-27752-z

    Article  Google Scholar 

  32. Kim SG, Malek M, Sigurdsson A, Lin LM, Kahler B (2018) Regenerative endodontics: a comprehensive review. Int Endod J 51(12):1367–1388. https://doi.org/10.1111/iej.12954

    Article  Google Scholar 

  33. Doğan H, Qalt S (2001) Effects of chelating agents and sodium hypochlorite on mineral content of root dentin. J Endod 27(9):578–80. https://doi.org/10.1097/00004770-200109000-00006

    Article  Google Scholar 

  34. Martinho FC, Leite FRM, Arruda-Vasconcelos R, Louzada LM, Darveau RP, Gomes BPFA (2021) Influence of bacterial profiles in cytokine and clinical features of endodontic disease. J Endod 47:1265–1271. https://doi.org/10.1016/j.joen.2021.04.026

    Article  Google Scholar 

  35. Morgan E, Varro R, Sepulveda H, Ember JA, Apgar J, Wilson J, Lowe L, Chen R, Shivraj L, Agadir A, Campos R, Ernst D, Gaur A (2004) Cytometric bead array: a multiplexed assay platform with applications in various areas of biology. Clin Immunol 110:252–266. https://doi.org/10.1016/j.clim.2003.11.017

    Article  Google Scholar 

  36. Baker SM, Sugars RV, Wendel M, Smith AJ, Waddington RJ, Cooper PR, Sloan AJ (2009) TGF-beta/extracellular matrix interactions in dentin matrix: a role in regulating sequestration and protection of bioactivity. Calcif Tissue Int 85:66–74. https://doi.org/10.1007/s00223-009-9248-4

    Article  Google Scholar 

  37. Yoshiba K, Yoshiba N, Nakamura H, Iwaku M, Ozawa H (1996) Immunolocalization of fibronectin during reparative dentinogenesis in human teeth after pulp capping with calcium hydroxide. J Dent Res 75:1590–1597. https://doi.org/10.1177/00220345960750081101

    Article  Google Scholar 

  38. Usuelli M, Meyer T, Mezzenga R, Mitsi M (2021) VEGF and VEGFR2 bind to similar pH-sensitive sites on fibronectin, exposed by heparin-mediated conformational changes. J Biol Chem 296:100584. https://doi.org/10.1016/j.jbc.2021.100584

    Article  Google Scholar 

  39. Mochizuki M, Güç E, Park AJ, Julier Z, Briquez PS, Kuhn GA, Müller R, Swartz MA, Hubbell JA, Martino MM (2020) Growth factors with enhanced syndecan binding generate tonic signalling and promote tissue healing. Nat Biomed Eng 4:463–475. https://doi.org/10.1038/s41551-019-0469-1

    Article  Google Scholar 

  40. Ferreira LN, Puppin-Rontani RM, Pascon FM (2020) Effect of intracanal medicaments and irrigants on the release of transforming growth factor beta 1 and vascular endothelial growth factor from cervical root dentin. J Endod 46:1616–1622. https://doi.org/10.1016/j.joen.2020.07.034

    Article  Google Scholar 

  41. Khan JA, Hasan A, Dossa S, Ali B (2021) Effect of natural and artificial dentin conditioners on the release of vascular endothelial growth factor. J Endod 47:800–805. https://doi.org/10.1016/j.joen.2021.02.001

    Article  Google Scholar 

  42. Zeng Q, Nguyen S, Zhang H, Chebrolu HP, Alzebdeh D, Badi MA, Kim JR, Ling J, Yang M (2016) Release of growth factors into root canal by irrigations in regenerative endodontics. J Endod 42:1760–1766. https://doi.org/10.1016/j.joen.2016.04.029

    Article  Google Scholar 

  43. Evanko SP, Raines EW, Ross R, Gold LI, Wight TN (1998) Proteoglycan distribution in lesions of atherosclerosis depends on lesion severity, structural characteristics, and the proximity of platelet-derived growth factor and transforming growth factor-beta. Am J Pathol 152:533–546

    Google Scholar 

  44. Goldberg M, Kulkarni AB, Young M, Boskey A (2011) Dentin: structure, composition and mineralization. Front Biosci 3:711–735. https://doi.org/10.2741/e281

    Article  Google Scholar 

  45. Hong S, Li L, Cai W, Jiang B (2018) The potential application of concentrated growth factor in regenerative endodontics. Int Endod J 52(5):646–655. https://doi.org/10.1111/iej.13045

    Article  Google Scholar 

  46. Ratih DN, Sari NI, Santosa P, Kaswati N (2020) Time-dependent effect of chitosan nanoparticles as final irrigation on the apical sealing ability and push-out bond strength of root canal obturation. Int J Dent 2020:8887593. https://doi.org/10.1155/2020/8887593

    Article  Google Scholar 

  47. Atesci AA, Avci CB, Tuglu MI, Ozates Ay NP, Eronat AC (2020) Effect of different dentin conditioning agents on growth factor release, mesenchymal stem cell attachment and morphology. J Endod 46:200–208. https://doi.org/10.1016/j.joen.2019.10.033

    Article  Google Scholar 

  48. Mohammadi Z, Shalavi S, Jafarzadeh H (2013) Ethylenediaminetetraacetic acid in endodontics. Eur J Dent 7:S135–S142. https://doi.org/10.4103/1305-7456.119091

    Article  Google Scholar 

  49. Fadeeva IV, Barinov SM, Fedotov AY, Komlev VS (2011) Interactions of calcium phosphates with chitosan. Dokl Chem 441(2):387. https://doi.org/10.1134/S0012500811120044

    Article  Google Scholar 

  50. Del Carpio-Perochena A, Bramante CM, Duarte MA, de Moura MR, Aouada FA, Kishen A (2015) Chelating and antibacterial properties of chitosan nanoparticles on dentin. Restor Dent Endod 40:195–201. https://doi.org/10.5395/rde.2015.40.3.195

    Article  Google Scholar 

  51. Hashmi A, Zhang X, Kishen A (2019) Impact of dentin substrate modification with chitosan-hydroxyapatite precursor nanocomplexes on sealer penetration and tensile strength. J Endod 45(7):935–942. https://doi.org/10.1016/j.joen.2019.03.021

    Article  Google Scholar 

  52. Kishen A, Shi Z, Shrestha A, Neoh KG (2008) An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal disinfection. J Endod 34(12):1515–1520. https://doi.org/10.1016/j.joen.2008.08.035

    Article  Google Scholar 

Download references

Funding

This research was funded by the Universidad Nacional de Colombia through the Convocatoria para el fortalecimiento de alianzas interdisciplinarias de investigación y creación artística sede Bogotá 2018, Project Code: 41999.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia García-Guerrero.

Ethics declarations

Ethics approval and consent to participate

All procedures were carried out in accordance with the ethical standards of the ethics and research committee of the Faculty of Dentistry of the National University of Colombia, Code #CIEFO-335–19, and with the Helsinki declaration, 1964, with its respective modifications. All participants provided informed consent for the acquisition and use of the experimental samples.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quijano-Guauque, S., Bernal-Cepeda, L.J., Delgado, F.G. et al. Effect of chitosan irrigant solutions on the release of bioactive proteins from root dentin. Clin Oral Invest 27, 691–703 (2023). https://doi.org/10.1007/s00784-022-04787-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-022-04787-1

Keywords

Navigation