Skip to main content

Advertisement

Log in

Alkyl trimethyl ammonium bromide for the formulation of antibacterial orthodontic resins

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

This study aimed at formulating antibacterial orthodontic resins containing alkyl trimethyl ammonium bromide (ATAB) and evaluating their physicochemical and biological properties.

Materials and Methods

The chemical composition and microstructure of ATAB was characterized through FTIR and SEM, respectively. Experimental orthodontic BisGMA/TEGDMA-based resins were formulated, and the ATAB filler was incorporated at 1wt%, 5wt%, and 10wt%, along with colloidal silica (5wt%). The degree of conversion, softening in solvent, and flexural strength of the experimental resins were analyzed. Biological properties were also assessed through cytotoxicity and antibacterial analyses.

Results

The incorporation of ATAB, due to the presence of ⎯N+(CH3)3 alkyl groups, had no adverse effect on the degree of conversion of the resins (p > 0.05). The %ΔKHN values at 5wt% and 10wt% were comparable to those of the control group, while the flexural strength was reduced at all concentrations of ATAB. The viability of the gingival fibroblast was reduced with the addition of ATAB (p < 0.05). The viability of biofilm and planktonic bacteria was reduced when ATAB was incorporated at 5wt% and 10wt%.

Conclusions

The addition of ATAB at 5wt% resulted suitable for the formulation of orthodontic resins with the ability to control the biofilm formation and planktonic activity of S.mutans, without jeopardizing some specific physicochemical properties.

Clinical Relevance

White spot lesions in orthodontic patients may be controlled by preventive treatments. Non-patient-dependent strategies, such as the use of orthodontic resins containing ATAB, may avoid accumulation of bacteria, especially in those areas surrounding orthodontic appliances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kettle JE, Hyde AC, Frawley T et al (2020) Managing orthodontic appliances in everyday life: A qualitative study of young people’s experiences with removable functional appliances, fixed appliances and retainers. J Orthod 47:47–54. https://doi.org/10.1177/1465312519899671

    Article  PubMed  Google Scholar 

  2. Papageorgiou SN, Koletsi D, Iliadi A et al (2020) Treatment outcome with orthodontic aligners and fixed appliances: a systematic review with meta-analyses. Eur J Orthod 42:331–343. https://doi.org/10.1093/ejo/cjz094

    Article  PubMed  Google Scholar 

  3. Julien KC, Buschang PH, Campbell PM (2013) Prevalence of white spot lesion formation during orthodontic treatment. Angle Orthod 83:641–647. https://doi.org/10.2319/071712-584.1

    Article  PubMed  PubMed Central  Google Scholar 

  4. Takahashi N, Nyvad B (2011) The Role of Bacteria in the Caries Process: Ecological Perspectives. J Dent Res 90:294–303. https://doi.org/10.1177/0022034510379602

    Article  PubMed  Google Scholar 

  5. Höchli D, Hersberger-Zurfluh M, Papageorgiou SN, Eliades T (2017) Interventions for orthodontically induced white spot lesions: a systematic review and meta-analysis. Eur J Orthod 39:122–133. https://doi.org/10.1093/ejo/cjw065

    Article  PubMed  Google Scholar 

  6. Sundararaj D, Venkatachalapathy S, Tandon A, Pereira A (2015) Critical evaluation of incidence and prevalence of white spot lesions during fixed orthodontic appliance treatment: A meta-analysis. J Int Soc Prev Community Dent 5:433–439. https://doi.org/10.4103/2231-0762.167719

    Article  PubMed  PubMed Central  Google Scholar 

  7. He T, Li X, Dong Y et al (2016) Comparative assessment of fluoride varnish and fluoride film for remineralization of postorthodontic white spot lesions in adolescents and adults over a 6-month period: A single-center, randomized controlled clinical trial. Am J Orthod Dentofacial Orthop 149:810–819. https://doi.org/10.1016/j.ajodo.2015.12.010

    Article  PubMed  Google Scholar 

  8. Sonesson M, Brechter A, Abdulraheem S et al (2020) Fluoride varnish for the prevention of white spot lesions during orthodontic treatment with fixed appliances: a randomized controlled trial. Eur J Orthod 42:326–330. https://doi.org/10.1093/ejo/cjz045

    Article  PubMed  Google Scholar 

  9. Altmann ASP, Collares FM, Leitune VCB, Samuel SMW (2016) The effect of antimicrobial agents on bond strength of orthodontic adhesives: a meta-analysis of in vitro studies. Orthod Craniofac Res 19:1–9. https://doi.org/10.1111/ocr.12100

    Article  PubMed  Google Scholar 

  10. Lopatiene K, Borisovaite M, Lapenaite E (2016) Prevention and Treatment of White Spot Lesions During and After Treatment with Fixed Orthodontic Appliances: a Systematic Literature Review. J Oral Maxillofac Res 7:e1. https://doi.org/10.5037/jomr.2016.7201

    Article  PubMed  PubMed Central  Google Scholar 

  11. Condò R, Mampieri G, Cioffi A et al (2021) Physical and chemical mechanisms involved in adhesion of orthodontic bonding composites: in vitro evaluations. BMC Oral Health 21:1–12. https://doi.org/10.1186/s12903-021-01715-9

    Article  Google Scholar 

  12. Cheng L, Zhang K, Zhang N et al (2017) Developing a New Generation of Antimicrobial and Bioactive Dental Resins. J Dent Res 96:855–863. https://doi.org/10.1177/0022034517709739

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ferreira CJ, Leitune VCB, Balbinot G de S et al (2019) Antibacterial and remineralizing fillers in experimental orthodontic adhesives. Materials (Basel) 21;12(4):652. https://doi.org/10.3390/ma12040652

  14. Altmann ASP, Collares FM, Ogliari FA, Samuel SMW (2015) Effect of methacrylated-based antibacterial monomer on orthodontic adhesive system properties. Am J Orthod Dentofacial Orthop 147:S82-87. https://doi.org/10.1016/j.ajodo.2015.01.015

    Article  PubMed  Google Scholar 

  15. Liu Y, Zhang L, Niu L-N et al (2018) Antibacterial and remineralizing orthodontic adhesive containing quaternary ammonium resin monomer and amorphous calcium phosphate nanoparticles. J Dent 72:53–63. https://doi.org/10.1016/j.jdent.2018.03.004

    Article  PubMed  Google Scholar 

  16. Nam H-J, Kim Y-M, Kwon YH et al (2019) Fluorinated Bioactive Glass Nanoparticles: Enamel Demineralization Prevention and Antibacterial Effect of Orthodontic Bonding Resin. Materials (Basel) 12:E1813. https://doi.org/10.3390/ma12111813

    Article  Google Scholar 

  17. Zhang T, Gu J, Liu X et al (2020) Bactericidal and antifouling electrospun PVA nanofibers modified with a quaternary ammonium salt and zwitterionic sulfopropylbetaine. Mater Sci Eng C Mater Biol Appl 111:110855. https://doi.org/10.1016/j.msec.2020.110855

    Article  PubMed  Google Scholar 

  18. Jiang H, Xiang G, Khoso SA et al (2019) Comparative Studies of Quaternary Ammonium Salts on the Aggregation and Dispersion Behavior of Kaolinite and Quartz. Minerals 9:473. https://doi.org/10.3390/min9080473

    Article  Google Scholar 

  19. Monteiro JC, Garcia IM, Leitune VCB, et al (2019) Halloysite nanotubes loaded with alkyl trimethyl ammonium bromide as antibacterial agent for root canal sealers. Dent Mater 35(5):789–796.https://doi.org/10.1016/j.dental.2019.02.018

  20. Garcia IM, Rodrigues SB, de Souza Balbinot G et al (2019) Quaternary ammonium compound as antimicrobial agent in resin-based sealants. Clin Oral Investig 24(2):777–784. https://doi.org/10.1007/s00784-019-02971-4

  21. Zhang Y, Chen Y, Hu Y et al (2018) Quaternary ammonium compounds in dental restorative materials. Dent Mater J 37:183–191. https://doi.org/10.4012/dmj.2017-096

    Article  PubMed  Google Scholar 

  22. Garcia IM, Leitune VCB, Arthur RA et al (2020) Chemical, Mechanical and Biological Properties of an Adhesive Resin with Alkyl Trimethyl Ammonium Bromide-loaded Halloysite Nanotubes. J Adhes Dent 22:399–407. https://doi.org/10.3290/j.jad.a44871

    Article  PubMed  Google Scholar 

  23. Yılmaz B, Bakkal M, Zengin Kurt B (2020) Structural and mechanical analysis of three orthodontic adhesive composites cured with different light units. J Appl Biomater Funct Mater 18:2280800020901716. https://doi.org/10.1177/2280800020901716

    Article  PubMed  Google Scholar 

  24. Degrazia FW, Altmann ASP, Ferreira CJ et al (2019) Evaluation of an antibacterial orthodontic adhesive incorporated with niobium-based bioglass: an in situ study. Braz Oral Res 33:e010. https://doi.org/10.1590/1807-3107bor-2019.vol33.0010

    Article  PubMed  Google Scholar 

  25. Altmann ASP, Collares FM, Balbinot G de S et al (2017) Niobium pentoxide phosphate invert glass as a mineralizing agent in an experimental orthodontic adhesive. Angle Orthod 87:759–765.https://doi.org/10.2319/122417-140.1

  26. Collares FM, Portella FF, Leitune VCB, Samuel SMW (2014) Discrepancies in degree of conversion measurements by FTIR. Braz Oral Res 28:9–15. https://doi.org/10.1590/S1806-83242013000600002

    Article  Google Scholar 

  27. ISO 4049:2009 - Dentistry -- Polymer-based restorative materials. https://www.iso.org/standard/42898.html. Accessed 4 Feb 2018

  28. 14:00-17:00 ISO 10993-5:2009. In: ISO. http://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/03/64/36406.html. Accessed 16 Nov 2019

  29. 14:00-17:00 ISO 10993-12:2021. In: ISO. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/57/75769.html. Accessed 2 Jun 2022

  30. Orellana EA, Kasinski AL (2016) Sulforhodamine B (SRB) Assay in Cell Culture to Investigate Cell Proliferation. Bio Protoc 6:e1984. https://doi.org/10.21769/BioProtoc.1984

  31. Balbinot G de S, Leitune VCB, Ogliari FA, Collares FM (2020) Niobium silicate particles as bioactive fillers for composite resins. Dental Materials 36:1578–1585.https://doi.org/10.1016/j.dental.2020.09.010

  32. Balbinot GS, Leitune VCB, Ogliari FA, Collares FM (2020) Niobium silicate particles promote in vitro mineral deposition on dental adhesive resins. J Dent 101:103449. https://doi.org/10.1016/j.jdent.2020.103449

    Article  PubMed  Google Scholar 

  33. Martini Garcia I, Jung Ferreira C, de Souza VS et al (2019) Ionic liquid as antibacterial agent for an experimental orthodontic adhesive. Dent Mater 35:1155–1165. https://doi.org/10.1016/j.dental.2019.05.010

    Article  PubMed  Google Scholar 

  34. Wessels S, Ingmer H (2013) Modes of action of three disinfectant active substances: a review. Regul Toxicol Pharmacol 67:456–467. https://doi.org/10.1016/j.yrtph.2013.09.006

    Article  PubMed  Google Scholar 

  35. McDonnell G, Russell AD (1999) Antiseptics and Disinfectants: Activity, Action, and Resistance. Clin Microbiol Rev 12:147–179

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kenawy E-R, Abdel-Hay FI, El-Shanshoury AE-RR, El-Newehy MH (2002) Biologically active polymers. V. Synthesis and antimicrobial activity of modified poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) derivatives with quaternary ammonium and phosphonium salts. J Polym Sci Part A: Polym Chem 40:2384–2393. https://doi.org/10.1002/pola.10325

    Article  Google Scholar 

  37. Fujioka-Kobayashi M, Miron RJ, Lussi A et al (2019) Effect of the degree of conversion of resin-based composites on cytotoxicity, cell attachment, and gene expression. Dent Mater 35:1173–1193. https://doi.org/10.1016/j.dental.2019.05.015

    Article  PubMed  Google Scholar 

  38. Arikawa H, Kanie T, Fujii K et al (2007) Effect of filler properties in composite resins on light transmittance characteristics and color. Dent Mater J 26:38–44

    Article  PubMed  Google Scholar 

  39. Pithon MM, dos Santos RL, Martins FO et al (2010) Evaluation of cytotoxicity and degree of conversion of orthodontic adhesives over different time periods. Mat Res 13:165–169. https://doi.org/10.1590/S1516-14392010000200008

    Article  Google Scholar 

  40. Sena LMF de, Barbosa HAM, Caldas SGFR et al (2018) Effect of different bonding protocols on degree of monomer conversion and bond strength between orthodontic brackets and enamel. Braz Oral Res 11;32:e58. https://doi.org/10.1590/1807-3107bor-2018.vol32.0058

  41. De Souza G, Braga RR, Cesar PF et al (2015) Correlation between clinical performance and degree of conversion of resin cements: a literature review. J Appl Oral Sci 23:358–368. https://doi.org/10.1590/1678-775720140524

    Article  PubMed  Google Scholar 

  42. Shin D-H, Rawls HR (2009) Degree of conversion and color stability of the light curing resin with new photoinitiator systems. Dent Mater 25:1030–1038. https://doi.org/10.1016/j.dental.2009.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  43. Altmann ASP, Degrazia FW, Celeste RK et al (2016) Orthodontic bracket bonding without previous adhesive priming: A meta-regression analysis. Angle Orthod 86:391–398. https://doi.org/10.2319/041615-255.1

    Article  PubMed  Google Scholar 

  44. Bitello-Firmino L, Soares VK, Damé-Teixeira N et al (2018) Microbial Load After Selective and Complete Caries Removal in Permanent Molars: a Randomized Clinical Trial. Braz Dent J 29:290–295. https://doi.org/10.1590/0103-6440201801816

    Article  PubMed  Google Scholar 

  45. Schwarz SR, Hirsch S, Hiergeist A et al (2021) Limited antimicrobial efficacy of oral care antiseptics in microcosm biofilms and phenotypic adaptation of bacteria upon repeated exposure. Clin Oral Investig 25:2939–2950. https://doi.org/10.1007/s00784-020-03613-w

    Article  PubMed  Google Scholar 

  46. Bationo R, Rouamba A, Diarra A et al (2021) Cytotoxicity evaluation of dental and orthodontic light-cured composite resins. Clin Exp Dent Res 7:40. https://doi.org/10.1002/cre2.337

    Article  PubMed  Google Scholar 

  47. Jagdish N, Padmanabhan S, Chitharanjan AB et al (2009) Cytotoxicity and Degree of Conversion of Orthodontic Adhesives. Angle Orthod 79:1133–1138. https://doi.org/10.2319/080808-418R.1

    Article  PubMed  Google Scholar 

  48. Schmalz G, Galler KM (2017) Biocompatibility of biomaterials – Lessons learned and considerations for the design of novel materials. Dent Mater 33:382–393. https://doi.org/10.1016/j.dental.2017.01.011

    Article  PubMed  Google Scholar 

  49. 14:00-17:00 ISO 7405:2018. In: ISO. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/15/71503.html. Accessed 2 Jun 2022

  50. Jowsey IR, Kligman AM, White IR et al (2007) Evidence that two alkyl ester quaternary ammonium compounds lack substantial human skin-sensitizing potential. Dermatitis 18:32–39. https://doi.org/10.2310/6620.2007.06036

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CAPES “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil—Finance Code 001" (PI: F.C.). This research project was also supported by the grant “Ministerio de Ciencia, Innovación y Universidades” (PID2020-120346GB-I00) (PI: SS).

Funding

This research project was also supported by the grant “Ministerio de Ciencia, Innovación y Universidades” (PID2020-120346 GB-I00) (PI: SS).

Author information

Authors and Affiliations

Authors

Contributions

Gabriela de Souza Balbinot performed investigation, formal analysis, data curation, writing—original draft, and project administration. Nicóly Marcon performed formal analysis and data curation. Salvatore Sauro contributed to conceptualization, methodology, and writing—review and editing. Santiago Arias Luxan performed writing—review and editing. Fabricio Mezzomo Collares contributed to conceptualization, methodology, writing—review and editing, and funding acquisition.

Corresponding author

Correspondence to Fabrício Mezzomo Collares.

Ethics declarations

Ethical approval

Ethics approval from CEP- Universidade Federal do Rio Grande do Sul (#03,294,318.0.0000.5347).

Informed consent

A written informed consent was obtained from a patient that donated tissue for cell culture studies.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balbinot, G.d., Marcon, N., Sauro, S. et al. Alkyl trimethyl ammonium bromide for the formulation of antibacterial orthodontic resins. Clin Oral Invest 26, 7011–7019 (2022). https://doi.org/10.1007/s00784-022-04661-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-022-04661-0

Keywords

Navigation