Skip to main content

Advertisement

Log in

Precision medicine using patient-specific modelling: state of the art and perspectives in dental practice

  • Review
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

The dental practice has largely evolved in the last 50 years following a better understanding of the biomechanical behaviour of teeth and its supporting structures, as well as developments in the fields of imaging and biomaterials. However, many patients still encounter treatment failures; this is related to the complex nature of evaluating the biomechanical aspects of each clinical situation due to the numerous patient-specific parameters, such as occlusion and root anatomy. In parallel, the advent of cone beam computed tomography enabled researchers in the field of odontology as well as clinicians to gather and model patient data with sufficient accuracy using image processing and finite element technologies. These developments gave rise to a new precision medicine concept that proposes to individually assess anatomical and biomechanical characteristics and adapt treatment options accordingly. While this approach is already applied in maxillofacial surgery, its implementation in dentistry is still restricted. However, recent advancements in artificial intelligence make it possible to automate several parts of the laborious modelling task, bringing such user-assisted decision-support tools closer to both clinicians and researchers. Therefore, the present narrative review aimed to present and discuss the current literature investigating patient-specific modelling in dentistry, its state-of-the-art applications, and research perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kishore M, Panat SR, Aggarwal A et al (2014) Evidence based dental care: integrating clinical expertise with systematic research. J Clin Diagn Res 8:259–262. https://doi.org/10.7860/JCDR/2014/6595.4076

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hilton TJ, Funkhouser E, Ferracane JL et al (2020) Recommended treatment of cracked teeth: results from the national dental practice-based research network. J Prosthet Dent 123:71–78. https://doi.org/10.1016/j.prosdent.2018.12.005

    Article  PubMed  Google Scholar 

  3. Versiani MA, Cavalcante DM, Belladonna FG et al (2021) A critical analysis of research methods and experimental models to study dentinal microcracks. Int J Endod 55:178–226. https://doi.org/10.1111/iej.13660

    Article  Google Scholar 

  4. Ordinola-Zapata R, Lin F, Nagarkar S et al (2022) A critical analysis of research methods and experimental models to study the load capacity and clinical behaviour of the root filled teeth. Int Endod J 55:471–494. https://doi.org/10.1111/iej.13722

    Article  PubMed  PubMed Central  Google Scholar 

  5. von Arx T, Maldonado P, Bornstein MM (2020) Occurrence of vertical root fractures after apical surgery: a retrospective analysis. J Endod 47:239–246. https://doi.org/10.1016/j.joen.2020.10.012

    Article  Google Scholar 

  6. Yoshino K, Ito K, Kuroda M, Sugihara N (2015) Prevalence of vertical root fracture as the reason for tooth extraction in dental clinics. Clin Oral Investig 19:1405–1409. https://doi.org/10.1007/s00784-014-1357-4

    Article  PubMed  Google Scholar 

  7. Santos AFV, Tanaka CB, Lima RG et al (2009) Vertical root fracture in upper premolars with endodontic posts: finite element analysis. J Endod 35:117–120. https://doi.org/10.1016/j.joen.2008.09.021

    Article  PubMed  Google Scholar 

  8. Benazzi S, Grosse IR, Gruppioni G et al (2014) Comparison of occlusal loading conditions in a lower second premolar using three-dimensional finite element analysis. Clin Oral Investig 18:369–375. https://doi.org/10.1007/s00784-013-0973-8

    Article  PubMed  Google Scholar 

  9. Chatvanitkul C, Lertchirakarn V (2010) Stress distribution with different restorations in teeth with curved roots: a finite element analysis study. J Endod 36:115–118. https://doi.org/10.1016/j.joen.2009.09.026

    Article  PubMed  Google Scholar 

  10. Neal ML, Kerckhoffs R (2009) Current progress in patient-specific modeling. Brief Bioinform 11:111–126. https://doi.org/10.1093/bib/bbp049

    Article  PubMed  PubMed Central  Google Scholar 

  11. Baumgaertel S, Palomo JM, Palomo L, Hans MG (2009) Reliability and accuracy of cone-beam computed tomography dental measurements. Am J Orthod Dentofacial Orthop 136:18–19. https://doi.org/10.1016/j.ajodo.2007.09.016

    Article  Google Scholar 

  12. Zadpoor AA, Weinans H (2015) Patient-specific bone modeling and analysis: the role of integration and automation in clinical adoption. J Biomech 48:750–760. https://doi.org/10.1016/j.jbiomech.2014.12.018

    Article  PubMed  Google Scholar 

  13. Resnick CM, Inverso G, Wrzosek M, Padwa BL, Kaban LB, Peacock ZS (2016) Is there a difference in cost between standard and virtual surgical planning for orthognathic surgery? J Oral Maxillofac Surg 74:1827–1833. https://doi.org/10.1016/j.joms.2016.03.035

    Article  PubMed  Google Scholar 

  14. Eggermont F, Derikx LC, Verdonschot N et al (2018) Can patient-specific finite element models better predict fractures in metastatic bone disease than experienced clinicians? Bone Jt Res 7:430–439. https://doi.org/10.1302/2046-3758.76.BJR-2017-0325.R2

    Article  Google Scholar 

  15. Trivedi S (2014) Finite element analysis: a boon to dentistry. J Oral Biol Craniofacial Res 4:200–203. https://doi.org/10.1016/j.jobcr.2014.11.008

    Article  Google Scholar 

  16. Lahoud P, EzEldeen M, Beznik T et al (2021) Artificial intelligence for fast and accurate 3D tooth segmentation on CBCT. J Endod 47:825–827. https://doi.org/10.1016/j.joen.2020.12.020

    Article  Google Scholar 

  17. Richert R, Farges JC, Tamimi F et al (2020) Validated finite element models of premolars: a scoping review. Materials 13:3280. https://doi.org/10.3390/ma13153280

    Article  PubMed Central  Google Scholar 

  18. Kinney JH, Marshall SJ, Marshall GW (2003) The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature. Crit Rev Oral Biol Med 14:13–29. https://doi.org/10.1177/154411130301400103

    Article  PubMed  Google Scholar 

  19. Erdemir A, Guess TM, Halloran J, Tadepalli SC, Morrison TM (2012) Considerations for reporting finite element analysis studies in biomechanics. J Biomech 45:625–633. https://doi.org/10.1038/jid.2014.371

    Article  PubMed  PubMed Central  Google Scholar 

  20. de Rodrigues M, P, Soares PBF, Valdivia ADCM, et al (2017) Patient-specific finite element analysis of fiber post and ferrule design. J Endod 43:1539–1544. https://doi.org/10.1016/j.joen.2017.04.024

    Article  PubMed  Google Scholar 

  21. Knoops PGM, Papaioannou A, Borghi A et al (2019) A machine learning framework for automated diagnosis and computer-assisted planning in plastic and reconstructive surgery. Sci Rep 9:1–12. https://doi.org/10.1038/s41598-019-49506-1

    Article  Google Scholar 

  22. de Rodrigues M, P, Soares PBF, Gomes MAB, et al (2020) Direct resin composite restoration of endodontically-treated permanent molars in adolescents: bite force and patient-specific finite element analysis. J Appl Oral Sci 28:1–11. https://doi.org/10.1590/1678-7757-2019-0544

    Article  Google Scholar 

  23. Merema BBJ, Kraeima J, Glas HH et al (2021) Patient-specific finite element models of the human mandible: lack of consensus on current set-ups. Oral Dis 27:42–51. https://doi.org/10.1111/odi.13381

    Article  PubMed  Google Scholar 

  24. Grassi L, Schileo E, Boichon C et al (2014) Comprehensive evaluation of PCA-based finite element modelling of the human femur. Med Eng Phys 36:1246–1252. https://doi.org/10.1016/j.medengphy.2014.06.021

    Article  PubMed  Google Scholar 

  25. Maquart T, Wenfeng Y, Elguedj T et al (2020) 3D volumetric isotopological meshing for finite element and isogeometric based reduced order modeling. Comput Methods Appl Mech Eng 362:112809. https://doi.org/10.1016/j.cma.2019.112809

    Article  Google Scholar 

  26. Tyas MJ, Burrow MF (2004) Adhesive restorative materials: a review. Aust Dent J 49:112–121. https://doi.org/10.1111/j.1834-7819.2004.tb00059.x

    Article  PubMed  Google Scholar 

  27. de Kuijper MCFM, Cune MS, Özcan M, Gresnigt MMM (2021) Clinical performance of direct composite resin versus indirect restorations on endodontically treated posterior teeth: a systematic review and meta-analysis. J Prosthet Dent 21:1–12. https://doi.org/10.1016/j.prosdent.2021.11.009

    Article  Google Scholar 

  28. Souza J, Fuentes MV, Baena E, Ceballos L (2021) One-year clinical performance of lithium disilicate versus resin composite CAD/CAM onlays. Odontology 109:259–270. https://doi.org/10.1007/s10266-020-00539-3

    Article  PubMed  Google Scholar 

  29. Mikeli A, Walter MH, Rau A et al (2021) Three-year clinical performance of posterior monolithic zirconia single crowns. J Prosthet Dent 21:1–6. https://doi.org/10.1016/j.prosdent.2021.03.004

    Article  Google Scholar 

  30. Sailer I, Makarov NA, Thoma DS et al (2015) All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part I: Single crowns (SCs). Dent Mater 31:603–623. https://doi.org/10.1016/j.dental.2015.02.011

    Article  PubMed  Google Scholar 

  31. Ausiello P, Rengo S, Davidson CL, Watts DC (2004) Stress distributions in adhesively cemented ceramic and resin-composite class II inlay restorations: a 3D-FEA study. Dent Mater 20:862–872. https://doi.org/10.1016/j.dental.2004.05.001

    Article  PubMed  Google Scholar 

  32. Barak MM, Geiger S, Chattah NLT et al (2009) Enamel dictates whole tooth deformation: a finite element model study validated by a metrology method. J Struct Biol 168:511–520. https://doi.org/10.1016/j.jsb.2009.07.019

    Article  PubMed  Google Scholar 

  33. Magne P, Oganesyan T (2009) Premolar cuspal flexure as a function of restorative material and occlusal contact location. Quintessence Int 40:363–370

    PubMed  Google Scholar 

  34. Dioguardi M, Alovisi M, Troiano G et al (2021) Clinical outcome of bonded partial indirect posterior restorations on vital and non-vital teeth: a systematic review and meta-analysis. Clin Oral Investig 25:6597–6621. https://doi.org/10.1007/s00784-021-04187-x

    Article  PubMed  PubMed Central  Google Scholar 

  35. Morimoto S, Rebello De Sampaio FBW et al (2016) Survival rate of resin and ceramic inlays, onlays, and overlays: a systematic review and meta-analysis. J Dent Res 95:985–994. https://doi.org/10.1177/0022034516652848

    Article  PubMed  Google Scholar 

  36. Lin CL, Chang WJ, Lin YS et al (2009) Evaluation of the relative contributions of multi-factors in an adhesive MOD restoration using FEA and the Taguchi method. Dent Mater 25:1073–1081. https://doi.org/10.1016/j.dental.2009.01.105

    Article  PubMed  Google Scholar 

  37. Shabbir J, Zehra T, Najmi N et al (2021) Access cavity preparations: classification and literature review of traditional and minimally invasive endodontic access cavity designs. J Endod 14:1229–1244. https://doi.org/10.1016/j.joen.2021.05.007

    Article  Google Scholar 

  38. Moreno-Rabié C, Torres A, Lambrechts P, Jacobs R (2020) Clinical applications, accuracy and limitations of guided endodontics: a systematic review. Int Endod J 53:214–231. https://doi.org/10.1111/iej.13216

    Article  PubMed  Google Scholar 

  39. Fuss Z, Lustig J, Tamse A (1999) Prevalence of vertical root fractures in extracted endodontically treated teeth. Int Endod J 32:283–286. https://doi.org/10.1046/j.1365-2591.1999.00208.x.10.1046/j.1365-2591.1999.00208.x

    Article  PubMed  Google Scholar 

  40. Kishen A (2006) Mechanisms and risk factors for fracture predilection in endodontically treated teeth. Endod Top 13:57–83. https://doi.org/10.1111/j.1601-1546.2006.00201.x

    Article  Google Scholar 

  41. Zhang Y, Liu Y, She Y et al (2019) The effect of endodontic access cavities on fracture resistance of first maxillary molar using the extended finite element method. J Endod 45:316–321. https://doi.org/10.1016/j.joen.2018.12.006

    Article  PubMed  Google Scholar 

  42. Necchi S, Taschieri S, Petrini L et al (2008) Mechanical behaviour of nickel-titanium rotary endodontic instruments in simulated clinical conditions: a computational study. Int Endod J 41:939–949. https://doi.org/10.1111/j.1365-2591.2008.01454.x

    Article  PubMed  Google Scholar 

  43. Lee M, Versluis A, Kim B et al (2011) Correlation between experimental cyclic fatigue resistance and numerical stress analysis for nickel-titanium rotary files. J Endod 37:1152–1157. https://doi.org/10.1016/j.joen.2011.03.025

    Article  PubMed  Google Scholar 

  44. Richert R, Farges JC, Villat C, Valette S, Boisse P, Ducret M (2021) Decision support for removing fractured endodontic instruments: a patient-specific approach. Appl Sci 11:2602. https://doi.org/10.3390/app11062602

    Article  Google Scholar 

  45. Touati R, Fehmer V, Ducret M, Sailer I, Marchand L (2021) Augmented reality in esthetic dentistry: a case report. Curr Oral Heal Reports 8:23–28. https://doi.org/10.1007/s40496-021-00293-7

    Article  Google Scholar 

  46. Touati R, Richert R, Millet C, Farges JC, Sailer I, Ducret M (2019) Comparison of two innovative strategies using augmented reality for communication in aesthetic dentistry: a pilot study. J Healthc Eng 7019046. https://doi.org/10.1155/2019/7019046

  47. Richert R, Robinson P, Viguie G, Farges JC, Ducret M (2018) Multi-fiber-reinforced composites for the coronoradicular reconstruction of premolar teeth: a finite element analysis. Biomed Res Int 4302607. https://doi.org/10.1155/2018/4302607

  48. Pegoretti A, Fambri L, Zappini G, Bianchetti M (2002) Finite element analysis of a glass fibre reinforced composite endodontic post. Biomaterials 23:2667–2682. https://doi.org/10.1016/S0142-9612(01)00407-0

    Article  PubMed  Google Scholar 

  49. Richert R, Alsheghri AA, Alageel O et al (2021) Analytical model of I-bar clasps for removable partial dentures. Dent Mater 37:1066–1072. https://doi.org/10.1016/j.dental.2021.03.018

    Article  PubMed  Google Scholar 

  50. Alsheghri AA, Alageel O, Caron E, Ciobanu O, Tamimi F, Song J (2018) An analytical model to design circumferential clasps for laser-sintered removable partial dentures. Dent Mater 34:1474–1482. https://doi.org/10.1016/j.dental.2018.06.011

    Article  PubMed  Google Scholar 

  51. Srinivasan M, Schimmel M, Naharro M et al (2019) CAD/CAM milled removable complete dentures : time and cost estimation study. J Dent 80:75–79. https://doi.org/10.1016/j.jdent.2018.09.003

    Article  PubMed  Google Scholar 

  52. Rossini G, Parrini S, Castroflorio T, Deregibus A, Debernardi CL (2015) Efficacy of clear aligners in controlling orthodontic tooth movement: a systematic review. Angle Orthod 85:881–889. https://doi.org/10.2319/061614-436.1

    Article  PubMed  Google Scholar 

  53. Camardella LT, Rothier EKC, Vilella OV, Ongkosuwito EM, Breuning KH (2016) Virtual setup: application in orthodontic practice. J Orofac Orthop 77:409–419. https://doi.org/10.1007/s00056-016-0048-y

    Article  PubMed  Google Scholar 

  54. Ammar HH, Ngan P, Crout RJ, Mucino VH, Mukdadi OM (2011) Three-dimensional modeling and finite element analysis in treatment planning for orthodontic tooth movement. Am J Orthod Dentofac Orthop 139:59–71. https://doi.org/10.1016/j.ajodo.2010.09.020

    Article  Google Scholar 

  55. Feng Y, Kong WD, Cen WJ et al (2019) Finite element analysis of the effect of power arm locations on tooth movement in extraction space closure with miniscrew anchorage in customized lingual orthodontic treatment. Am J Orthod Dentofac Orthop 156:210–219. https://doi.org/10.1016/j.ajodo.2018.08.025

    Article  Google Scholar 

  56. Barone S, Paoli A, Razionale AV, Savignano R (2017) Computational design and engineering of polymeric orthodontic aligners. Int J Numer Method Biomed Eng 33:1–15. https://doi.org/10.1002/cnm.2839

    Article  Google Scholar 

  57. Sailer I, Karasan D, Todorovic A et al (2022) Prosthetic failures in dental implant therapy Periodontol 2000(1):130–144. https://doi.org/10.1111/prd.12416

    Article  Google Scholar 

  58. Ueda T, Kremer U, Katsoulis J et al (2011) Long-term results of mandibular implants supporting an overdenture: implant survival, failures, and crestal bone level changes. Int J Oral Maxillofac Implants 26:365–372

    PubMed  Google Scholar 

  59. Amaral CF, Gomes RS, Rodrigues Garcia RCM, Del Bel Cury AA (2018) Stress distribution of single-implant retained overdenture reinforced with a framework: a finite element analysis study. J Prosthet Dent 119:791–796. https://doi.org/10.1016/j.prosdent.2017.07.016

    Article  PubMed  Google Scholar 

  60. Eraslan O, Inan Ö (2010) The effect of thread design on stress distribution in a solid screw implant: a 3D finite element analysis. Clin Oral Investig 14:411–416. https://doi.org/10.1007/s00784-009-0305-1

    Article  PubMed  Google Scholar 

  61. Kuroshima S, Kaku M, Ishimoto T et al (2017) A paradigm shift for bone quality in dentistry: a literature review. J Prosthodont Res 61:353–362. https://doi.org/10.1016/j.jpor.2017.05.006

    Article  PubMed  Google Scholar 

  62. Roy S, Dey S, Khutia N, Roy A, Datta S (2018) Design of patient specific dental implant using FE analysis and computational intelligence techniques. Appl Soft Comput J 65:272–279. https://doi.org/10.1016/j.asoc.2018.01.025

    Article  Google Scholar 

  63. Cheng K, Liu Y, Wang R, Zhang J, Jiang X (2020) Topological optimization of 3D printed bone analog with PEKK for surgical mandibular reconstruction. J Mech Behav Biomed Mater 107:103758. https://doi.org/10.1016/j.jmbbm.2020.103758

    Article  PubMed  Google Scholar 

  64. Tamura N, Takaki T, Takano N, Shibahara T (2018) Three-dimensional finite element analysis of bone fixation in bilateral sagittal split ramus osteotomy using individual models. Bull Tokyo Dent Coll 59:67–78. https://doi.org/10.2209/tdcpublication.2013-3000

    Article  PubMed  Google Scholar 

  65. Andersson L (2013) Epidemiology of traumatic dental injuries. J Endod 39:S2-5. https://doi.org/10.1016/j.joen.2012.11.021

    Article  PubMed  Google Scholar 

  66. Torabinejad M, Nosrat A, Verma P, Udochukwu O (2017) Regenerative endodontic treatment or mineral trioxide aggregate apical plug in teeth with necrotic pulps and open apices: a systematic review and meta-analysis. J Endod 43:1806–1820. https://doi.org/10.1016/j.joen.2017.06.029

    Article  PubMed  Google Scholar 

  67. Mendoza-Mendoza A, Solano-Reina E, Iglesias-Linares A, Garcia-Godoy F, Abalos C (2012) Retrospective long-term evaluation of autotransplantation of premolars to the central incisor region. Int Endod J 45:88–97. https://doi.org/10.1111/j.1365-2591.2011.01951.x

    Article  PubMed  Google Scholar 

  68. EzEldeen M, Wyatt J, Al-Rimawi A et al (2019) Use of CBCT guidance for tooth autotransplantation in children. J Dent Res 98:406–413. https://doi.org/10.1177/0022034519828701

    Article  PubMed  Google Scholar 

  69. Jamshidi D, Homayouni H, Majd NM (2018) Impact and fracture strength of simulated immature teeth treated with mineral trioxide aggregate apical plug and fiber post versus. J Endod 44:1878–1882. https://doi.org/10.1016/j.joen.2018.09.008

    Article  PubMed  Google Scholar 

  70. Mello I, Michaud P, Butt Z (2020) Fracture resistance of immature teeth submitted to different endodontic procedures and restorative protocols. J Endod 46:1465–1469. https://doi.org/10.1016/j.joen.2020.06.015

    Article  PubMed  Google Scholar 

  71. Demirel A, Bezgin T, Sarı Ş (2021) Effects of root maturation and thickness variation in coronal mineral trioxide aggregate plugs under traumatic load on stress distribution in regenerative endodontic procedures: A 3-dimensional finite element analysis study. J Endod 47:492–499. https://doi.org/10.1016/j.joen.2020.11.006

    Article  PubMed  Google Scholar 

  72. Belli S, Eraslan O, Eskitaşcıoğlu G (2018) Effect of different treatment options on biomechanics of immature teeth: a finite element stress analysis study. J Endod 44:475–479. https://doi.org/10.1016/j.joen.2017.08.037

    Article  PubMed  Google Scholar 

  73. Anthrayose P, Nawal RR, Yadav S, Talwar S, Yadav S (2021) Effect of revascularisation and apexification procedures on biomechanical behaviour of immature maxillary central incisor teeth: a three-dimensional finite element analysis study. Clin Oral Investig 26. https://doi.org/10.1007/s00784-021-03953-1

  74. Shen L, He F, Zhang C, Jiang H, Wang J (2018) Prevalence of malocclusion in primary dentition in mainland China, 1988–2017: a systematic review and meta-analysis. Sci Rep 8:2–11. https://doi.org/10.1038/s41598-018-22900-x

    Article  Google Scholar 

  75. Kuralt M, Fidler A (2021) Assessment of reference areas for superimposition of serial 3D models of patients with advanced periodontitis for volumetric soft tissue evaluation. J Clin Periodontol 48:765–773. https://doi.org/10.1111/jcpe.13445

    Article  PubMed  Google Scholar 

  76. Tarce M, Merheb J, Meeus M et al (2022) Surgical guides for guided bone augmentation: an in vitro study. Clin Oral Implants Res 5:558–567. https://doi.org/10.1111/clr.13916

    Article  Google Scholar 

  77. Schmidt F, Lapatki BG (2019) Effect of variable periodontal ligament thickness and its non-linear material properties on the location of a tooth’s centre of resistance. J Biomech 94:211–218. https://doi.org/10.1016/j.jbiomech.2019.07.043

    Article  PubMed  Google Scholar 

  78. Ren LM, Wang WX, Takao Y, Chen ZX (2010) Effects of cementum-dentine junction and cementum on the mechanical response of tooth supporting structure. J Dent 38:882–891. https://doi.org/10.1016/j.jdent.2010.07.013

    Article  PubMed  Google Scholar 

  79. Nikolaus A, Currey JD, Lindtner T, Fleck C, Zaslansky P (2017) Importance of the variable periodontal ligament geometry for whole tooth mechanical function: a validated numerical study. J Mech Behav Biomed Mater 67:61–73. https://doi.org/10.1016/j.jmbbm.2016.11.020

    Article  PubMed  Google Scholar 

  80. Genco R (2000) Borgnakke W (2014) Risk factors for periodontal disease. Periodontol 2014(4):59–94

    Google Scholar 

  81. Celikten B, Jacobs R, deFaria VK, Huang Y, Nicolielo LFP, Orhan K (2017) Assessment of volumetric distortion artifact in filled root canals using different cone-beam computed tomographic devices. J Endod 43:1517–1521. https://doi.org/10.1016/j.joen.2017.03.035

    Article  PubMed  Google Scholar 

  82. Celikten B, Jacobs R, de Faria VK et al (2019) Comparative evaluation of cone beam CT and micro-CT on blooming artifacts in human teeth filled with bioceramic sealers. Clin Oral Investig 23:3267–3273. https://doi.org/10.1007/s00784-018-2748-8

    Article  PubMed  Google Scholar 

  83. Rangel FA, Maal TJJ, Bronkhorst EM et al (2013) Accuracy and reliability of a novel method for fusion of digital dental casts and cone beam computed tomography scans. PLoS ONE 8:1–7. https://doi.org/10.1371/journal.pone.0059130

    Article  Google Scholar 

  84. Buchgreitz J, Buchgreitz M, Mortensen D, Bjørndal L (2016) Guided access cavity preparation using cone-beam computed tomography and optical surface scans – an ex vivo study. Int Endod J 49:790–795. https://doi.org/10.1111/iej.12516

    Article  PubMed  Google Scholar 

  85. Ezhov M, Gusarev M, Golitsyna M et al (2021) Clinically applicable artificial intelligence system for dental diagnosis with CBCT. Sci Rep 11:1–16. https://doi.org/10.1038/s41598-021-94093-9

    Article  Google Scholar 

  86. Lee SKY, Salinas TJ, Wiens JP (2021) The effect of patient specific factors on occlusal forces generated: best evidence consensus statement. J Prosthodont 30:52–60. https://doi.org/10.1111/jopr.13334

    Article  PubMed  Google Scholar 

  87. Murakami N, Wakabayashi N (2014) Finite element contact analysis as a critical technique in dental biomechanics: a review. J Prosthodont Res 58:92–101. https://doi.org/10.1016/j.jpor.2014.03.001

    Article  PubMed  Google Scholar 

  88. Vukicevic AM, Zelic K, Milasinovic D et al (2021) OpenMandible: an open-source framework for highly realistic numerical modelling of lower mandible physiology. Dent Mater 37:612–624. https://doi.org/10.1016/j.dental.2021.01.009

    Article  PubMed  Google Scholar 

  89. Calka M, Perrier P, Ohayon J, Grivot-Boichon C, Rochette M, Payan Y (2021) Machine-learning based model order reduction of a biomechanical model of the human tongue. Comput Methods Programs Biomed 105786. https://doi.org/10.1016/j.cmpb.2020.105786

  90. Badrou A, Bel-Brunon A, Hamila N, Tardif N, Gravouil A (2020) Reduced order modeling of an active multi-curve guidewire for endovascular surgery. Comput Methods Biomech Biomed Engin 23:S23-24. https://doi.org/10.1080/10255842.2020.1811497

    Article  Google Scholar 

  91. Bergomi M, Cugnoni J, Botsis J, Belser UC, Anselm Wiskott HW (2010) The role of the fluid phase in the viscous response of bovine periodontal ligament. J Biomech 43:1146–1152. https://doi.org/10.1016/j.jbiomech.2009.12.020

    Article  PubMed  Google Scholar 

  92. Viceconti M, Olsen S, Nolte LP, Burton K (2005) Extracting clinically relevant data from finite element simulations. Clin Biomech 20:451–454. https://doi.org/10.1016/j.clinbiomech.2005.01.010

    Article  Google Scholar 

  93. Chang Y, Tambe AA, Maeda Y, Wada M, Gonda T (2018) Finite element analysis of dental implants with validation: to what extent can we expect the model to predict biological phenomena? A literature review and proposal for classification of a validation process. Int J Implant Dent 4:1–7. https://doi.org/10.1186/s40729-018-0119-5

    Article  Google Scholar 

  94. Boudissa M, Bahl G, Oliveri H et al (2021) Virtual preoperative planning of acetabular fractures using patient-specific biomechanical simulation : a case-control study. Orthop Traumatol Surg Res 107:1–6. https://doi.org/10.1016/j.otsr.2021.103004

    Article  Google Scholar 

  95. Derycke L, Sénémaud J, Perrin D et al (2020) Patient specific computer modelling for automated sizing of fenestrated stent grafts. Eur J Vasc Endovasc Surg 59:237–246. https://doi.org/10.1016/j.ejvs.2019.10.009

    Article  PubMed  Google Scholar 

  96. Xia JJ, Phillips CV, Gateno J et al (2006) Cost-effectiveness analysis for computer-aided surgical simulation in complex cranio-maxillofacial surgery. J Oral Maxillofac Surg 64:1780–1784. https://doi.org/10.1016/j.joms.2005.12.072

    Article  PubMed  Google Scholar 

  97. Park SY, Hwang DS, Song JM, Kim UK (2019) Comparison of time and cost between conventional surgical planning and virtual surgical planning in orthognathic surgery in Korea. Maxillofac Plast Reconstr Surg 41:1–7. https://doi.org/10.1186/s40902-019-0220-6

    Article  Google Scholar 

  98. Sheth B, Lavin AC, Martinez C, Sabesan VJ (2022) The use of preoperative planning to decrease costs and increase efficiency in the OR. JSES Int 6:454–458. https://doi.org/10.1016/j.jseint.2022.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  99. Schwendicke F, Krois J (2022) Precision dentistry—what it is, where it fails (yet), and how to get there. Clin Oral Investig 26:3395–3403. https://doi.org/10.1007/s00784-022-04420-1

    Article  PubMed  PubMed Central  Google Scholar 

  100. Mörch CM, Atsu S, Cai W et al (2021) Artificial intelligence and ethics in dentistry: a scoping review. J Dent Res 100:1452–1460. https://doi.org/10.1177/00220345211013808

    Article  PubMed  Google Scholar 

  101. Schwendicke F, Samek W, Krois J (2020) Artificial intelligence in dentistry: chances and challenges. J Dent Res 99:769–774. https://doi.org/10.1177/0022034520915714

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Philip Robinson (Ph.D; Hospices Civils de Lyon, France) for helping in this manuscript’s preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Richert.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahoud, P., Jacobs, R., Boisse, P. et al. Precision medicine using patient-specific modelling: state of the art and perspectives in dental practice. Clin Oral Invest 26, 5117–5128 (2022). https://doi.org/10.1007/s00784-022-04572-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-022-04572-0

Keywords

Navigation