Daly C (2016) Oral and dental effects of antidepressants. Aust Prescr 39:84. https://doi.org/10.18773/austprescr.2016.035
Article
PubMed
PubMed Central
Google Scholar
Tschoppe P, Wolgin M, Pischon N, Kielbassa AM (2010) Etiologic factors of hyposalivation and consequences for oral health. Quintessence Int 41:321–333
PubMed
Google Scholar
Thomson WM (2015) Dry mouth and older people. Aust Dent J 60(Suppl 1):54–63. https://doi.org/10.1111/adj.12284
Article
PubMed
Google Scholar
Thomson WM, Chalmers JM, Spencer AJ, Slade GD (2000) Medication and dry mouth: findings from a cohort study of older people. J Public Health Dent 60:12–20. https://doi.org/10.1111/j.1752-7325.2000.tb03286.x
Article
PubMed
Google Scholar
Hopcraft MS, Tan C (2010) Xerostomia: an update for clinicians. Aust Dent J 55:238–44. https://doi.org/10.1111/j.1834-7819.2010.01229.x (quiz 353)
Article
PubMed
Google Scholar
Rundegren J, van Dijken J, Mornstad H, von Knorring L (1985) Oral conditions in patients receiving long-term treatment with cyclic antidepressant drugs. Swed Dent J 9:55–64
PubMed
Google Scholar
Nadig SD, Ashwathappa DT, Manjunath M, Krishna S, Annaji AG, Shivaprakash PK (2017) A relationship between salivary flow rates and Candida counts in patients with xerostomia. J Oral Maxillofac Pathol: JOMFP 21:316. https://doi.org/10.4103/jomfp.JOMFP_231_16
Article
PubMed
PubMed Central
Google Scholar
Prasanthi B, Kannan N, Patil R (2014) Effect of diuretics on salivary flow, composition and oral health status: a clinico-biochemical study. Ann Med Health Sci Res 4:549–553. https://doi.org/10.4103/2141-9248.139311
Article
PubMed
PubMed Central
Google Scholar
Pawar RS, Grundel E (2017) Overview of regulation of dietary supplements in the USA and issues of adulteration with phenethylamines (PEAs). Drug Test Anal 9:500–517. https://doi.org/10.1002/dta.1980
Article
PubMed
Google Scholar
Nisoli E, Carruba MO (2000) An assessment of the safety and efficacy of sibutramine, an anti-obesity drug with a novel mechanism of action. Obes Rev 1:127–139. https://doi.org/10.1046/j.1467-789x.2000.00020.x
Article
PubMed
Google Scholar
Heal DJ, Aspley S, Prow MR, Jackson HC, Martin KF, Cheetham SC (1998) Sibutramine: a novel anti-obesity drug. A review of the pharmacological evidence to differentiate it from d-amphetamine and d-fenfluramine. Int J Obes Relat Metab Disord 22(1):18–28 (discussion S29)
Google Scholar
Connoley IP, Liu YL, Frost I, Reckless IP, Heal DJ, Stock MJ (1999) Thermogenic effects of sibutramine and its metabolites. Br J Pharmacol 126:1487–1495. https://doi.org/10.1038/sj.bjp.0702446
Article
PubMed
PubMed Central
Google Scholar
Kim SE, Ahn HS, Choi BH, Jang HJ, Kim MJ, Rhie DJ, Yoon SH, Jo YH, Kim MS, Sung KW, Hahn SJ (2007) Open channel block of A-type, kv4.3, and delayed rectifier K+ channels, Kv1.3 and Kv3.1, by sibutramine. J Pharmacol Exp Ther 321:753–762. https://doi.org/10.1124/jpet.106.117747
Article
PubMed
Google Scholar
McDaniel SS, Platoshyn O, Yu Y, Sweeney M, Miriel VA, Golovina VA, Krick S, Lapp BR, Wang JY, Yuan JX (2001) Anorexic effect of K+ channel blockade in mesenteric arterial smooth muscle and intestinal epithelial cells. J Appl Physiol 91:2322–2333. https://doi.org/10.1152/jappl.2001.91.5.2322
Article
PubMed
Google Scholar
Dedov II, Melnichenko GA, Troshina EA, Mazurina NV, Galieva MO (2018) Body weight reduction associated with the sibutramine treatment: overall results of the PRIMAVERA Primary Health Care Trial. Obes Facts 11:335–343. https://doi.org/10.1159/000488880
Article
PubMed
PubMed Central
Google Scholar
James WP, Astrup A, Finer N, Hilsted J, Kopelman P, Rossner S, Saris WH, Van Gaal LF (2000) Effect of sibutramine on weight maintenance after weight loss: a randomised trial. STORM Study Group. Sibutramine Trial of Obesity Reduction and Maintenance. Lancet 356:2119–2125. https://doi.org/10.1016/s0140-6736(00)03491-7
Article
PubMed
Google Scholar
Fanghanel G, Cortinas L, Sanchez-Reyes L, Berber A (2000) A clinical trial of the use of sibutramine for the treatment of patients suffering essential obesity. Int J Obes Relat Metab Disord 24:144–150. https://doi.org/10.1038/sj.ijo.0801098
Article
PubMed
Google Scholar
Appolinario JC, Bacaltchuk J, Sichieri R, Claudino AM, Godoy-Matos A, Morgan C, Zanella MT, Coutinho W (2003) A randomized, double-blind, placebo-controlled study of sibutramine in the treatment of binge-eating disorder. Arch Gen Psychiatry 60:1109–1116. https://doi.org/10.1001/archpsyc.60.11.1109
Article
PubMed
Google Scholar
Faria AN, Ribeiro Filho FF, Kohlmann NE, Gouvea Ferreira SR, Zanella MT (2005) Effects of sibutramine on abdominal fat mass, insulin resistance and blood pressure in obese hypertensive patients. Diabetes Obes Metab 7:246–253. https://doi.org/10.1111/j.1463-1326.2005.00465.x
Article
PubMed
Google Scholar
Araujo JR, Martel F (2012) Sibutramine effects on central mechanisms regulating energy homeostasis. Curr Neuropharmacol 10:49–52. https://doi.org/10.2174/157015912799362788
Article
PubMed
PubMed Central
Google Scholar
Chou KM, Huang BY, Fanchiang JK, Chen CH (2007) Comparison of the effects of sibutramine and orlistat on obese, poorly-controlled type 2 diabetic patients. Chang Gung Med J 30:538–546
PubMed
Google Scholar
da Silva CJ, dos Santos JE, Satie Takahashi C (2010) An evaluation of the genotoxic and cytotoxic effects of the anti-obesity drugs sibutramine and fenproporex. Hum Exp Toxicol 29:187–197. https://doi.org/10.1177/0960327109358732
Article
PubMed
Google Scholar
Morikawa Y, Shibata A, Sasajima Y, Suenami K, Sato K, Takekoshi Y, Endo S, Ikari A, Matsunaga T (2018) Sibutramine facilitates apoptosis and contraction of aortic smooth muscle cells through elevating production of reactive oxygen species. Eur J Pharmacol 841:113–121. https://doi.org/10.1016/j.ejphar.2018.10.009
Article
PubMed
Google Scholar
Guzman DC, Garcia EH, Mejia GB, Olguin HJ, Jimenez FT, Soto EB, Del Angel DS, Aparicio LC (2012) Effect of sibutramine on 5-hydroxyindole acetic acid levels and selected oxidative biomarkers on brain regions of female rats in the presence of zinc. Basic Clin Pharmacol Toxicol 110:421–426. https://doi.org/10.1111/j.1742-7843.2011.00829.x
Article
PubMed
Google Scholar
Nogueira FN, Carvalho AM, Yamaguti PM, Nicolau J (2005) Antioxidant parameters and lipid peroxidation in salivary glands of streptozotocin-induced diabetic rats. Clin Chim Acta 353:133–139. https://doi.org/10.1016/j.cccn.2004.11.004
Article
PubMed
Google Scholar
Ibuki FK, Simoes A, Nogueira FN (2010) Antioxidant enzymatic defense in salivary glands of streptozotocin-induced diabetic rats: a temporal study. Cell Biochem Funct 28:503–508. https://doi.org/10.1002/cbf.1683
Article
PubMed
Google Scholar
Zalewska A, Knas M, Zendzian-Piotrowska M, Waszkiewicz N, Szulimowska J, Prokopiuk S, Waszkiel D, Car H (2014) Antioxidant profile of salivary glands in high fat diet-induced insulin resistance rats. Oral Dis 20:560–566. https://doi.org/10.1111/odi.12173
Article
PubMed
Google Scholar
Xu L, Yang X, Cai J, Ma J, Cheng H, Zhao K, Yang L, Cao Y, Qin Q, Zhang C, Zhang Q, Sun X (2013) Resveratrol attenuates radiation-induced salivary gland dysfunction in mice. Laryngoscope 123:E23–E29. https://doi.org/10.1002/lary.24276
Article
PubMed
Google Scholar
Campos SC, Moreira DA, Nunes TD, Colepicolo P, Brigagao MR (2005) Oxidative stress in alcohol-induced rat parotid sialadenosis. Arch Oral Biol 50:661–668. https://doi.org/10.1016/j.archoralbio.2004.11.013
Article
PubMed
Google Scholar
Onopiuk B, Onopiuk P, Dabrowska Z, Dabrowska E, Pietruska M, Car H (2018) Effect of metronidazole on the oxidoreductive processes in the submandibular and parotid glands in experimental research. Oxid Med Cell Longev 2018:7083486. https://doi.org/10.1155/2018/7083486
Article
PubMed
PubMed Central
Google Scholar
Bellentani FF, Fernandes GS, Perobelli JE, Pacini ES, Kiguti LR, Pupo AS, Kempinas WD (2011) Acceleration of sperm transit time and reduction of sperm reserves in the epididymis of rats exposed to sibutramine. J Androl 32:718–724. https://doi.org/10.2164/jandrol.111.013466
Article
PubMed
Google Scholar
Borges CS, Silva PV, Lozano AFQ, Missassi G, Silva RF, Anselmo-Franci JA, Kempinas WG (2020) Impact of timing of the anorexigen sibutramine administration on reproductive end-points of male rats. Basic Clin Pharmacol Toxicol 127:525–532. https://doi.org/10.1111/bcpt.13467
Article
PubMed
Google Scholar
Noel PR, Barnett KC, Davies RE, Jolly DW, Leahy JS, Mawdesley-Thomas LE, Shillam KW, Squires PF, Street AE, Tucker WC, Worden AN (1975) The toxicity of dimethyl sulphoxide (DMSO) for the dog, pig, rat and rabbit. Toxicology 3:143–169. https://doi.org/10.1016/0300-483x(75)90081-5
Article
PubMed
Google Scholar
Dos Santos DR, Fiais GA, de Oliveira PA, Dos Santos LFG, Kayahara GM, Crivelini MM, Matsushita DH, Antoniali C, Nakamune A, Dornelles RCM, Chaves-Neto AH (2022) Effects of orchiectomy and testosterone replacement therapy on redox balance and salivary gland function in Wistar rats. J Steroid Biochem Mol Biol 218:106048. https://doi.org/10.1016/j.jsbmb.2021.106048
Article
PubMed
Google Scholar
Hartree EF (1972) Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem 48:422–427. https://doi.org/10.1016/0003-2697(72)90094-2
Article
PubMed
Google Scholar
Nagy A, Barta A, Varga G, Zelles T (2001) Changes of salivary amylase in serum and parotid gland during pharmacological and physiological stimulation. J Physiol Paris 95:141–145. https://doi.org/10.1016/s0928-4257(01)00018-3
Article
PubMed
Google Scholar
Dal Pra KJ, de Fatima Moraes da Silva A, Chaves-Neto AH, Soubhia AMP (2020) Effects of cachaca, a typical Brazilian alcoholic beverage, on submandibular glands of rats: a histomorphometric and biochemical study. Clin Oral Invest 24:4283–4290. https://doi.org/10.1007/s00784-020-03290-9
Article
Google Scholar
Sanchez GA, Miozza V, Delgado A, Busch L (2011) Determination of salivary levels of mucin and amylase in chronic periodontitis patients. J Periodontal Res 46:221–227. https://doi.org/10.1111/j.1600-0765.2010.01332.x
Article
PubMed
Google Scholar
Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310
Article
Google Scholar
Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
Article
PubMed
Google Scholar
Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126
Article
Google Scholar
Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333
Article
Google Scholar
Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76. https://doi.org/10.1006/abio.1996.0292
Article
PubMed
Google Scholar
Akerboom TP, Sies H (1981) Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol 77:373–382
Article
Google Scholar
Trivedi RC, Rebar L, Berta E, Stong L (1978) New enzymatic method for serum uric acid at 500 nm. Clin Chem 24:1908–1911
Article
Google Scholar
Deconte SR, Oliveira RJ, Calábria LK, Oliveira VN, Gouveia NM, AaS M, Espindola FS (2011) Alterations of antioxidant biomarkers and type I collagen deposition in the parotid gland of streptozotocin-induced diabetic rats. Arch Oral Biol 56:744–751. https://doi.org/10.1016/j.archoralbio.2011.01.005
Article
PubMed
Google Scholar
Ekuni D, Endo Y, Irie K, Azuma T, Tamaki N, Tomofuji T, Morita M (2010) Imbalance of oxidative/anti-oxidative status induced by periodontitis is involved in apoptosis of rat submandibular glands. Arch Oral Biol 55:170–176. https://doi.org/10.1016/j.archoralbio.2009.11.013
Article
PubMed
Google Scholar
Monteiro MM, D’Epiro TT, Bernardi L, Fossati AC, Santos MF, Lamers ML (2017) Long- and short-term diabetes mellitus type 1 modify young and elder rat salivary glands morphology. Arch Oral Biol 73:40–47. https://doi.org/10.1016/j.archoralbio.2016.08.028
Article
PubMed
Google Scholar
Krishnan M, Tennavan A, Saraswathy S, Sekhri T, Singh AK, Nair V (2017) Acute radiation-induced changes in Sprague-Dawley rat submandibular glands: a histomorphometric analysis. World J Oncol 8:45–52. https://doi.org/10.14740/wjon1021w
Article
PubMed
PubMed Central
Google Scholar
Bertoldo BB, Etchebehere RM, Furtado TCS, Faria JB, Silva CB, Araújo MF, Rodrigues DBR, Pereira SAL (2019) Lingual salivary gland hypertrophy and decreased acinar density in chagasic patients without megaesophagus. Rev Inst Med Trop Sao Paulo 61:e67. https://doi.org/10.1590/S1678-9946201961067
Article
PubMed
PubMed Central
Google Scholar
Chakraborty PK, Mustafi SB, Raha S (2008) Pro-survival effects of repetitive low-grade oxidative stress are inhibited by simultaneous exposure to Resveratrol. Pharmacol Res 58:281–289. https://doi.org/10.1016/j.phrs.2008.08.007
Article
PubMed
Google Scholar
Es PV, Borges CDS, Rosa JL, Pacheco TL, Figueiredo TM, Leite GAA, Guerra MT, Anselmo-Franci JA, Klinefelter GR, Kempinas WG (2020) Effects of isolated or combined exposure to sibutramine and rosuvastatin on reproductive parameters of adult male rats. J Appl Toxicol: JAT 40:947–964. https://doi.org/10.1002/jat.3955
Article
Google Scholar
Pal GK, Kannan N, Pal P (2004) Effects of injection of serotonin into nucleus caudatus on food and water intake and body weight in albino rats. Indian J Physiol Pharmacol 48:437–445
PubMed
Google Scholar
Vickers SP, Jackson HC, Cheetham SC (2011) The utility of animal models to evaluate novel anti-obesity agents. Br J Pharmacol 164:1248–1262. https://doi.org/10.1111/j.1476-5381.2011.01245.x
Article
PubMed
PubMed Central
Google Scholar
Hansen G, Jelsing J, Vrang N (2012) Effects of liraglutide and sibutramine on food intake, palatability, body weight and glucose tolerance in the gubra DIO-rats. Acta Pharmacol Sin 33:194–200. https://doi.org/10.1038/aps.2011.168
Article
PubMed
PubMed Central
Google Scholar
Vickers SP, Cheetham SC, Headland KR, Dickinson K, Grempler R, Mayoux E, Mark M, Klein T (2014) Combination of the sodium-glucose cotransporter-2 inhibitor empagliflozin with orlistat or sibutramine further improves the body-weight reduction and glucose homeostasis of obese rats fed a cafeteria diet. Diabetes Metab Syndr Obes 7:265–275. https://doi.org/10.2147/DMSO.S58786
Article
PubMed
PubMed Central
Google Scholar
Maciejczyk M, Matczuk J, Zendzian-Piotrowska M, Niklinska W, Fejfer K, Szarmach I, Ladny JR, Zieniewska I, Zalewska A (2018) Eight-week consumption of high-sucrose diet has a pro-oxidant effect and alters the function of the salivary glands of rats. Nutrients 10:1530. https://doi.org/10.3390/nu10101530
Article
PubMed Central
Google Scholar
Dost P, Kaiser S (1997) Ultrasonographic biometry in salivary glands. Ultrasound Med Biol 23:1299–1303. https://doi.org/10.1016/s0301-5629(97)00152-x
Article
PubMed
Google Scholar
Brown M, Bing C, King P, Pickavance L, Heal D, Wilding J (2001) Sibutramine reduces feeding, body fat and improves insulin resistance in dietary-obese male Wistar rats independently of hypothalamic neuropeptide Y. Br J Pharmacol 132:1898–1904. https://doi.org/10.1038/sj.bjp.0704030
Article
PubMed
PubMed Central
Google Scholar
Amano O, Mizobe K, Bando Y, Sakiyama K (2012) Anatomy and histology of rodent and human major salivary glands: -overview of the Japan salivary gland society-sponsored workshop. Acta Histochem Cytochem 45:241–250. https://doi.org/10.1267/ahc.12013
Article
PubMed
PubMed Central
Google Scholar
Mozaffari MS, Abdelsayed R, Zakhary I, El-Salanty M, Liu JY, Wimborne H, El-Marakby A (2011) Submandibular gland and caries susceptibility in the obese Zucker rat. J Oral Pathol Medicine 40:194–200. https://doi.org/10.1111/j.1600-0714.2010.00965.x
Article
Google Scholar
da Silva S, de Azevedo LR, de Lima AA, Ignacio SA, Machado MA, ZacliKevis MV, Gregio AM (2009) Effects of fluoxetine and venlafaxine and pilocarpine on rat parotid glands. Med Chem 5:483–490. https://doi.org/10.2174/157340609789117868
Article
PubMed
Google Scholar
Koller MM, Cowman RA, Humphreys-Beher MG, Scarpace PJ (2000) An analysis of submandibular salivary gland function with desipramine and age in female NIA Fischer 344 rats. Mech Ageing Dev 119:131–147. https://doi.org/10.1016/s0047-6374(00)00176-7
Article
PubMed
Google Scholar
Koller MM, Purushotham KR, Maeda N, Scarpace PJ, Humphreys-Beher MG (2000) Desipramine induced changes in salivary proteins, cultivable oral microbiota and gingival health in aging female NIA Fischer 344 rats. Life Sci 68:445–455. https://doi.org/10.1016/s0024-3205(00)00951-6
Article
PubMed
Google Scholar
Mattioli TM, Silva S, Gregio AM, Machado MA, Lima AA, Alanis LR (2011) The effects of antidepressants and pilocarpine on rat parotid glands: an immunohistochemical study. Clinics 66:1605–1610. https://doi.org/10.1590/s1807-59322011000900017
Article
PubMed
PubMed Central
Google Scholar
Jackson HC, Needham AM, Hutchins LJ, Mazurkiewicz SE, Heal DJ (1997) Comparison of the effects of sibutramine and other monoamine reuptake inhibitors on food intake in the rat. Br J Pharmacol 121:1758–1762. https://doi.org/10.1038/sj.bjp.0701312
Article
PubMed
PubMed Central
Google Scholar
Naini A, Morgan B, Mandel ID (1989) Effect of protein malnutrition on the composition of submandibular glands of aged rats. Arch Oral Biol 34:985–988. https://doi.org/10.1016/0003-9969(89)90056-3
Article
PubMed
Google Scholar
Johnson DA, Lopez H, Navia JM (1995) Effects of protein deficiency and diet consistency on the parotid gland and parotid saliva of rats. J Dent Res 74:1444–1452. https://doi.org/10.1177/00220345950740080301
Article
PubMed
Google Scholar
Hata F, Yagasaki O (1989) Re-evaluation of the stimulatory effect of norepinephrine on the secretion of amylase in the parotid gland of the rat. Neuropharmacology 28:1099–1105. https://doi.org/10.1016/0028-3908(89)90123-8
Article
PubMed
Google Scholar
Proctor GB, Asking B, Garrett JR (1990) Effects of parasympathectomy on protein composition of sympathetically evoked parotid saliva in rats. Comp Biochem Physiol A Comp Physiol 97:335–339. https://doi.org/10.1016/0300-9629(90)90620-8
Article
PubMed
Google Scholar
Garrett JR, Suleiman AM, Anderson LC, Proctor GB (1991) Secretory responses in granular ducts and acini of submandibular glands in vivo to parasympathetic or sympathetic nerve stimulation in rats. Cell Tissue Res 264:117–126. https://doi.org/10.1007/BF00305729
Article
PubMed
Google Scholar
Fukui H, Miwa E, Iwachido T, Kitaura H, Furukawa H (2010) Various emetogens increase the secretion of salivary amylase in rats: a potential model in emesis research. J Pharmacol Sci 113:143–152. https://doi.org/10.1254/jphs.10037fp
Article
PubMed
Google Scholar
Woolard J, Bennett T, Dunn WR, Heal DJ, Aspley S, Gardiner SM (2004) Acute cardiovascular effects of sibutramine in conscious rats. J Pharmacol Exp Ther 308:1102–1110. https://doi.org/10.1124/jpet.103.061259
Article
PubMed
Google Scholar
Heusser K, Engeli S, Tank J, Diedrich A, Wiesner S, Janke J, Luft FC, Jordan J (2007) Sympathetic vasomotor tone determines blood pressure response to long-term sibutramine treatment. J Clin Endocrinol Metab 92:1560–1563. https://doi.org/10.1210/jc.2006-2499
Article
PubMed
Google Scholar
Van Nueten JM, Janssens WJ, Vanhoutte PM (1985) Serotonin and vascular reactivity. Pharmacol Res Commun 17:585–608. https://doi.org/10.1016/0031-6989(85)90067-0
Article
PubMed
Google Scholar
Delaney C, Gien J, Grover TR, Roe G, Abman SH (2011) Pulmonary vascular effects of serotonin and selective serotonin reuptake inhibitors in the late-gestation ovine fetus. Am J Physiol Lung Cell Mol Physiol 301:L937–L944. https://doi.org/10.1152/ajplung.00198.2011
Article
PubMed
PubMed Central
Google Scholar
Abdelmawla AH, Langley RW, Szabadi E, Bradshaw CM (1999) Comparison of the effects of venlafaxine, desipramine, and paroxetine on noradrenaline- and methoxamine-evoked constriction of the dorsal hand vein. Br J Clin Pharmacol 48:345–354. https://doi.org/10.1046/j.1365-2125.1999.00031.x
Article
PubMed
PubMed Central
Google Scholar
Guzman DC, Ruiz NL, Garcia EH, Mejia GB, Tellez PP, Jimenez GE, De la Rosa Apreza M and Olguin HJ (2009) Effect of sibutramine on Na+, K+ ATPase activity and tryptophan levels on male and female rat brain. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme 41:363–7. https://doi.org/10.1055/s-0028-1128145
Suliburska J, Bogdanski P, Szulinska M, Pupek-Musialik D (2012) Short-term effects of sibutramine on mineral status and selected biochemical parameters in obese women. Biol Trace Elem Res 149:163–170. https://doi.org/10.1007/s12011-012-9425-6
Article
PubMed
PubMed Central
Google Scholar
Araldi RP, Santos NP, Mendes TB, Carvalho LB, Ito ET, de-Sa-Junior PL, Souza EB (2015) Can Spirulina maxima reduce the mutagenic potential of sibutramine? Genet Mol Res: GMR 14:18452–18464. https://doi.org/10.4238/2015.December.23.33
Article
PubMed
Google Scholar
Morikawa Y, Shibata A, Okumura N, Ikari A, Sasajima Y, Suenami K, Sato K, Takekoshi Y, El-Kabbani O, Matsunaga T (2017) Sibutramine provokes apoptosis of aortic endothelial cells through altered production of reactive oxygen and nitrogen species. Toxicol Appl Pharmacol 314:1–11. https://doi.org/10.1016/j.taap.2016.11.003
Article
PubMed
Google Scholar
Cakmak Karaer I, Simsek G, Yildiz A, Vardi N, Polat A, Tanbek K, Gurocak S, Parlakpinar H (2016) Melatonin’s protective effect on the salivary gland against ionized radiation damage in rats. J Oral Pathol Med 45:444–449. https://doi.org/10.1111/jop.12386
Article
PubMed
Google Scholar
Zalewska A, Knas M, Maciejczyk M, Waszkiewicz N, Klimiuk A, Choromanska M, Matczuk J, Waszkiel D, Car H (2015) Antioxidant profile, carbonyl and lipid oxidation markers in the parotid and submandibular glands of rats in different periods of streptozotocin induced diabetes. Arch Oral Biol 60:1375–1386. https://doi.org/10.1016/j.archoralbio.2015.06.012
Article
PubMed
Google Scholar
Leite MF, Lima AM, Massuyama MM, Otton R (2010) Astaxanthin restores the enzymatic antioxidant profile in salivary gland of alloxan-induced diabetic rats. Arch Oral Biol 55:479–485. https://doi.org/10.1016/j.archoralbio.2010.04.006
Article
PubMed
Google Scholar
Sakai M, Matsushita T, Hoshino R, Ono H, Ikai K, Sakai T (2017) Identification of the protective mechanisms of Lactoferrin in the irradiated salivary gland. Sci Rep 7:9753. https://doi.org/10.1038/s41598-017-10351-9
Article
PubMed
PubMed Central
Google Scholar
Limesand KH, Barzen KA, Quissell DO, Anderson SM (2003) Synergistic suppression of apoptosis in salivary acinar cells by IGF1 and EGF. Cell Death Differ 10:345–355. https://doi.org/10.1038/sj.cdd.4401153
Article
PubMed
Google Scholar
Li SS, Wu CZ, Zhang BW, Qiu L, Chen W, Yuan YH, Liu XC, Li CJ, Li LJ (2021) Nerve growth factor protects salivary glands from irradiation-induced damage. Life Sci 265:118748. https://doi.org/10.1016/j.lfs.2020.118748
Article
PubMed
Google Scholar
Xiang B, Han L, Wang X, Tang L, Li K, Li X, Zhao X, Xia M, Zhou X, Zhang F, Liu KJ (2016) Nicotinamide phosphoribosyltransferase upregulation by phenylephrine reduces radiation injury in submandibular gland. Int J Radiat Oncol Biol Phys 96:538–546. https://doi.org/10.1016/j.ijrobp.2016.06.2442
Article
PubMed
Google Scholar
Ferreira GM, Nazar BP, da Silva MR, Carriello MA, Freitas S, Appolinario JC (2018) Misuse of sibutramine and bulimia nervosa: a dangerous combination. Rev Bras Psiquiatr 40:343. https://doi.org/10.1590/1516-4446-2018-0004
Article
PubMed
PubMed Central
Google Scholar
Kim SH, Lee J, Yoon T, Choi J, Choi D, Kim D, Kwon SW (2009) Simultaneous determination of anti-diabetes/anti-obesity drugs by LC/PDA, and targeted analysis of sibutramine analog in dietary supplements by LC/MS/MS. Biomed Chromatogr: BMC 23:1259–1265. https://doi.org/10.1002/bmc.1248
Article
PubMed
Google Scholar