Skip to main content

Assessment of redox state and biochemical parameters of salivary glands in rats treated with anti-obesity drug sibutramine hydrochloride

Abstract

Objectives

To investigate the effects of anti-obesity drug sibutramine hydrochloride (SB) on redox state and biochemical parameters in the salivary glands.

Materials and methods

Adult male Wistar rats were randomly divided into the following groups (n = 8 per group): control rats treated with vehicle (C) and rats treated with SB (10 mg/kg/day) by intragastric gavage for 28 days. The parotid (PG) and submandibular (SMG) glands were processed using histomorphometric analysis, and total protein, amylase, mucin, and oxidative damage to lipids were determined by measuring the formation of thiobarbituric acid reactive substances (TBARS), total antioxidant capacity (TAC), uric acid (UA), total glutathione (tGSH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), and AKT phosphorylation.

Results

SB decreased the acinar area, and increased the stromal area in PG, while no effect on the morphometric parameters was observed in SMG. SB also increased oxidative damage to lipids (TBARs). The SB group showed lower total protein, amylase, TAC, UA, tGSH, SOD, CAT, and GPx than the C group in PG, while in SMG, SB decreased total protein, mucin, tGSH, SOD, CAT, and GPx. However, increased AKT phosphorylation observed in both salivary glands suggests that SB exerts low-intensity oxidative stress.

Conclusions

SB impaired enzymatic and non-enzymatic antioxidant defenses in the salivary glands of rats.

Clinical relevance

Chronic treatment with SB could mitigate salivary gland dysfunction due to disturbance of redox state.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Daly C (2016) Oral and dental effects of antidepressants. Aust Prescr 39:84. https://doi.org/10.18773/austprescr.2016.035

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tschoppe P, Wolgin M, Pischon N, Kielbassa AM (2010) Etiologic factors of hyposalivation and consequences for oral health. Quintessence Int 41:321–333

    PubMed  Google Scholar 

  3. Thomson WM (2015) Dry mouth and older people. Aust Dent J 60(Suppl 1):54–63. https://doi.org/10.1111/adj.12284

    Article  PubMed  Google Scholar 

  4. Thomson WM, Chalmers JM, Spencer AJ, Slade GD (2000) Medication and dry mouth: findings from a cohort study of older people. J Public Health Dent 60:12–20. https://doi.org/10.1111/j.1752-7325.2000.tb03286.x

    Article  PubMed  Google Scholar 

  5. Hopcraft MS, Tan C (2010) Xerostomia: an update for clinicians. Aust Dent J 55:238–44. https://doi.org/10.1111/j.1834-7819.2010.01229.x (quiz 353)

    Article  PubMed  Google Scholar 

  6. Rundegren J, van Dijken J, Mornstad H, von Knorring L (1985) Oral conditions in patients receiving long-term treatment with cyclic antidepressant drugs. Swed Dent J 9:55–64

    PubMed  Google Scholar 

  7. Nadig SD, Ashwathappa DT, Manjunath M, Krishna S, Annaji AG, Shivaprakash PK (2017) A relationship between salivary flow rates and Candida counts in patients with xerostomia. J Oral Maxillofac Pathol: JOMFP 21:316. https://doi.org/10.4103/jomfp.JOMFP_231_16

    Article  PubMed  PubMed Central  Google Scholar 

  8. Prasanthi B, Kannan N, Patil R (2014) Effect of diuretics on salivary flow, composition and oral health status: a clinico-biochemical study. Ann Med Health Sci Res 4:549–553. https://doi.org/10.4103/2141-9248.139311

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pawar RS, Grundel E (2017) Overview of regulation of dietary supplements in the USA and issues of adulteration with phenethylamines (PEAs). Drug Test Anal 9:500–517. https://doi.org/10.1002/dta.1980

    Article  PubMed  Google Scholar 

  10. Nisoli E, Carruba MO (2000) An assessment of the safety and efficacy of sibutramine, an anti-obesity drug with a novel mechanism of action. Obes Rev 1:127–139. https://doi.org/10.1046/j.1467-789x.2000.00020.x

    Article  PubMed  Google Scholar 

  11. Heal DJ, Aspley S, Prow MR, Jackson HC, Martin KF, Cheetham SC (1998) Sibutramine: a novel anti-obesity drug. A review of the pharmacological evidence to differentiate it from d-amphetamine and d-fenfluramine. Int J Obes Relat Metab Disord 22(1):18–28 (discussion S29)

    Google Scholar 

  12. Connoley IP, Liu YL, Frost I, Reckless IP, Heal DJ, Stock MJ (1999) Thermogenic effects of sibutramine and its metabolites. Br J Pharmacol 126:1487–1495. https://doi.org/10.1038/sj.bjp.0702446

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kim SE, Ahn HS, Choi BH, Jang HJ, Kim MJ, Rhie DJ, Yoon SH, Jo YH, Kim MS, Sung KW, Hahn SJ (2007) Open channel block of A-type, kv4.3, and delayed rectifier K+ channels, Kv1.3 and Kv3.1, by sibutramine. J Pharmacol Exp Ther 321:753–762. https://doi.org/10.1124/jpet.106.117747

    Article  PubMed  Google Scholar 

  14. McDaniel SS, Platoshyn O, Yu Y, Sweeney M, Miriel VA, Golovina VA, Krick S, Lapp BR, Wang JY, Yuan JX (2001) Anorexic effect of K+ channel blockade in mesenteric arterial smooth muscle and intestinal epithelial cells. J Appl Physiol 91:2322–2333. https://doi.org/10.1152/jappl.2001.91.5.2322

    Article  PubMed  Google Scholar 

  15. Dedov II, Melnichenko GA, Troshina EA, Mazurina NV, Galieva MO (2018) Body weight reduction associated with the sibutramine treatment: overall results of the PRIMAVERA Primary Health Care Trial. Obes Facts 11:335–343. https://doi.org/10.1159/000488880

    Article  PubMed  PubMed Central  Google Scholar 

  16. James WP, Astrup A, Finer N, Hilsted J, Kopelman P, Rossner S, Saris WH, Van Gaal LF (2000) Effect of sibutramine on weight maintenance after weight loss: a randomised trial. STORM Study Group. Sibutramine Trial of Obesity Reduction and Maintenance. Lancet 356:2119–2125. https://doi.org/10.1016/s0140-6736(00)03491-7

    Article  PubMed  Google Scholar 

  17. Fanghanel G, Cortinas L, Sanchez-Reyes L, Berber A (2000) A clinical trial of the use of sibutramine for the treatment of patients suffering essential obesity. Int J Obes Relat Metab Disord 24:144–150. https://doi.org/10.1038/sj.ijo.0801098

    Article  PubMed  Google Scholar 

  18. Appolinario JC, Bacaltchuk J, Sichieri R, Claudino AM, Godoy-Matos A, Morgan C, Zanella MT, Coutinho W (2003) A randomized, double-blind, placebo-controlled study of sibutramine in the treatment of binge-eating disorder. Arch Gen Psychiatry 60:1109–1116. https://doi.org/10.1001/archpsyc.60.11.1109

    Article  PubMed  Google Scholar 

  19. Faria AN, Ribeiro Filho FF, Kohlmann NE, Gouvea Ferreira SR, Zanella MT (2005) Effects of sibutramine on abdominal fat mass, insulin resistance and blood pressure in obese hypertensive patients. Diabetes Obes Metab 7:246–253. https://doi.org/10.1111/j.1463-1326.2005.00465.x

    Article  PubMed  Google Scholar 

  20. Araujo JR, Martel F (2012) Sibutramine effects on central mechanisms regulating energy homeostasis. Curr Neuropharmacol 10:49–52. https://doi.org/10.2174/157015912799362788

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chou KM, Huang BY, Fanchiang JK, Chen CH (2007) Comparison of the effects of sibutramine and orlistat on obese, poorly-controlled type 2 diabetic patients. Chang Gung Med J 30:538–546

    PubMed  Google Scholar 

  22. da Silva CJ, dos Santos JE, Satie Takahashi C (2010) An evaluation of the genotoxic and cytotoxic effects of the anti-obesity drugs sibutramine and fenproporex. Hum Exp Toxicol 29:187–197. https://doi.org/10.1177/0960327109358732

    Article  PubMed  Google Scholar 

  23. Morikawa Y, Shibata A, Sasajima Y, Suenami K, Sato K, Takekoshi Y, Endo S, Ikari A, Matsunaga T (2018) Sibutramine facilitates apoptosis and contraction of aortic smooth muscle cells through elevating production of reactive oxygen species. Eur J Pharmacol 841:113–121. https://doi.org/10.1016/j.ejphar.2018.10.009

    Article  PubMed  Google Scholar 

  24. Guzman DC, Garcia EH, Mejia GB, Olguin HJ, Jimenez FT, Soto EB, Del Angel DS, Aparicio LC (2012) Effect of sibutramine on 5-hydroxyindole acetic acid levels and selected oxidative biomarkers on brain regions of female rats in the presence of zinc. Basic Clin Pharmacol Toxicol 110:421–426. https://doi.org/10.1111/j.1742-7843.2011.00829.x

    Article  PubMed  Google Scholar 

  25. Nogueira FN, Carvalho AM, Yamaguti PM, Nicolau J (2005) Antioxidant parameters and lipid peroxidation in salivary glands of streptozotocin-induced diabetic rats. Clin Chim Acta 353:133–139. https://doi.org/10.1016/j.cccn.2004.11.004

    Article  PubMed  Google Scholar 

  26. Ibuki FK, Simoes A, Nogueira FN (2010) Antioxidant enzymatic defense in salivary glands of streptozotocin-induced diabetic rats: a temporal study. Cell Biochem Funct 28:503–508. https://doi.org/10.1002/cbf.1683

    Article  PubMed  Google Scholar 

  27. Zalewska A, Knas M, Zendzian-Piotrowska M, Waszkiewicz N, Szulimowska J, Prokopiuk S, Waszkiel D, Car H (2014) Antioxidant profile of salivary glands in high fat diet-induced insulin resistance rats. Oral Dis 20:560–566. https://doi.org/10.1111/odi.12173

    Article  PubMed  Google Scholar 

  28. Xu L, Yang X, Cai J, Ma J, Cheng H, Zhao K, Yang L, Cao Y, Qin Q, Zhang C, Zhang Q, Sun X (2013) Resveratrol attenuates radiation-induced salivary gland dysfunction in mice. Laryngoscope 123:E23–E29. https://doi.org/10.1002/lary.24276

    Article  PubMed  Google Scholar 

  29. Campos SC, Moreira DA, Nunes TD, Colepicolo P, Brigagao MR (2005) Oxidative stress in alcohol-induced rat parotid sialadenosis. Arch Oral Biol 50:661–668. https://doi.org/10.1016/j.archoralbio.2004.11.013

    Article  PubMed  Google Scholar 

  30. Onopiuk B, Onopiuk P, Dabrowska Z, Dabrowska E, Pietruska M, Car H (2018) Effect of metronidazole on the oxidoreductive processes in the submandibular and parotid glands in experimental research. Oxid Med Cell Longev 2018:7083486. https://doi.org/10.1155/2018/7083486

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bellentani FF, Fernandes GS, Perobelli JE, Pacini ES, Kiguti LR, Pupo AS, Kempinas WD (2011) Acceleration of sperm transit time and reduction of sperm reserves in the epididymis of rats exposed to sibutramine. J Androl 32:718–724. https://doi.org/10.2164/jandrol.111.013466

    Article  PubMed  Google Scholar 

  32. Borges CS, Silva PV, Lozano AFQ, Missassi G, Silva RF, Anselmo-Franci JA, Kempinas WG (2020) Impact of timing of the anorexigen sibutramine administration on reproductive end-points of male rats. Basic Clin Pharmacol Toxicol 127:525–532. https://doi.org/10.1111/bcpt.13467

    Article  PubMed  Google Scholar 

  33. Noel PR, Barnett KC, Davies RE, Jolly DW, Leahy JS, Mawdesley-Thomas LE, Shillam KW, Squires PF, Street AE, Tucker WC, Worden AN (1975) The toxicity of dimethyl sulphoxide (DMSO) for the dog, pig, rat and rabbit. Toxicology 3:143–169. https://doi.org/10.1016/0300-483x(75)90081-5

    Article  PubMed  Google Scholar 

  34. Dos Santos DR, Fiais GA, de Oliveira PA, Dos Santos LFG, Kayahara GM, Crivelini MM, Matsushita DH, Antoniali C, Nakamune A, Dornelles RCM, Chaves-Neto AH (2022) Effects of orchiectomy and testosterone replacement therapy on redox balance and salivary gland function in Wistar rats. J Steroid Biochem Mol Biol 218:106048. https://doi.org/10.1016/j.jsbmb.2021.106048

    Article  PubMed  Google Scholar 

  35. Hartree EF (1972) Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem 48:422–427. https://doi.org/10.1016/0003-2697(72)90094-2

    Article  PubMed  Google Scholar 

  36. Nagy A, Barta A, Varga G, Zelles T (2001) Changes of salivary amylase in serum and parotid gland during pharmacological and physiological stimulation. J Physiol Paris 95:141–145. https://doi.org/10.1016/s0928-4257(01)00018-3

    Article  PubMed  Google Scholar 

  37. Dal Pra KJ, de Fatima Moraes da Silva A, Chaves-Neto AH, Soubhia AMP (2020) Effects of cachaca, a typical Brazilian alcoholic beverage, on submandibular glands of rats: a histomorphometric and biochemical study. Clin Oral Invest 24:4283–4290. https://doi.org/10.1007/s00784-020-03290-9

    Article  Google Scholar 

  38. Sanchez GA, Miozza V, Delgado A, Busch L (2011) Determination of salivary levels of mucin and amylase in chronic periodontitis patients. J Periodontal Res 46:221–227. https://doi.org/10.1111/j.1600-0765.2010.01332.x

    Article  PubMed  Google Scholar 

  39. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  Google Scholar 

  40. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x

    Article  PubMed  Google Scholar 

  41. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  Google Scholar 

  42. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333

    Article  Google Scholar 

  43. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76. https://doi.org/10.1006/abio.1996.0292

    Article  PubMed  Google Scholar 

  44. Akerboom TP, Sies H (1981) Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol 77:373–382

    Article  Google Scholar 

  45. Trivedi RC, Rebar L, Berta E, Stong L (1978) New enzymatic method for serum uric acid at 500 nm. Clin Chem 24:1908–1911

    Article  Google Scholar 

  46. Deconte SR, Oliveira RJ, Calábria LK, Oliveira VN, Gouveia NM, AaS M, Espindola FS (2011) Alterations of antioxidant biomarkers and type I collagen deposition in the parotid gland of streptozotocin-induced diabetic rats. Arch Oral Biol 56:744–751. https://doi.org/10.1016/j.archoralbio.2011.01.005

    Article  PubMed  Google Scholar 

  47. Ekuni D, Endo Y, Irie K, Azuma T, Tamaki N, Tomofuji T, Morita M (2010) Imbalance of oxidative/anti-oxidative status induced by periodontitis is involved in apoptosis of rat submandibular glands. Arch Oral Biol 55:170–176. https://doi.org/10.1016/j.archoralbio.2009.11.013

    Article  PubMed  Google Scholar 

  48. Monteiro MM, D’Epiro TT, Bernardi L, Fossati AC, Santos MF, Lamers ML (2017) Long- and short-term diabetes mellitus type 1 modify young and elder rat salivary glands morphology. Arch Oral Biol 73:40–47. https://doi.org/10.1016/j.archoralbio.2016.08.028

    Article  PubMed  Google Scholar 

  49. Krishnan M, Tennavan A, Saraswathy S, Sekhri T, Singh AK, Nair V (2017) Acute radiation-induced changes in Sprague-Dawley rat submandibular glands: a histomorphometric analysis. World J Oncol 8:45–52. https://doi.org/10.14740/wjon1021w

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bertoldo BB, Etchebehere RM, Furtado TCS, Faria JB, Silva CB, Araújo MF, Rodrigues DBR, Pereira SAL (2019) Lingual salivary gland hypertrophy and decreased acinar density in chagasic patients without megaesophagus. Rev Inst Med Trop Sao Paulo 61:e67. https://doi.org/10.1590/S1678-9946201961067

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chakraborty PK, Mustafi SB, Raha S (2008) Pro-survival effects of repetitive low-grade oxidative stress are inhibited by simultaneous exposure to Resveratrol. Pharmacol Res 58:281–289. https://doi.org/10.1016/j.phrs.2008.08.007

    Article  PubMed  Google Scholar 

  52. Es PV, Borges CDS, Rosa JL, Pacheco TL, Figueiredo TM, Leite GAA, Guerra MT, Anselmo-Franci JA, Klinefelter GR, Kempinas WG (2020) Effects of isolated or combined exposure to sibutramine and rosuvastatin on reproductive parameters of adult male rats. J Appl Toxicol: JAT 40:947–964. https://doi.org/10.1002/jat.3955

    Article  Google Scholar 

  53. Pal GK, Kannan N, Pal P (2004) Effects of injection of serotonin into nucleus caudatus on food and water intake and body weight in albino rats. Indian J Physiol Pharmacol 48:437–445

    PubMed  Google Scholar 

  54. Vickers SP, Jackson HC, Cheetham SC (2011) The utility of animal models to evaluate novel anti-obesity agents. Br J Pharmacol 164:1248–1262. https://doi.org/10.1111/j.1476-5381.2011.01245.x

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hansen G, Jelsing J, Vrang N (2012) Effects of liraglutide and sibutramine on food intake, palatability, body weight and glucose tolerance in the gubra DIO-rats. Acta Pharmacol Sin 33:194–200. https://doi.org/10.1038/aps.2011.168

    Article  PubMed  PubMed Central  Google Scholar 

  56. Vickers SP, Cheetham SC, Headland KR, Dickinson K, Grempler R, Mayoux E, Mark M, Klein T (2014) Combination of the sodium-glucose cotransporter-2 inhibitor empagliflozin with orlistat or sibutramine further improves the body-weight reduction and glucose homeostasis of obese rats fed a cafeteria diet. Diabetes Metab Syndr Obes 7:265–275. https://doi.org/10.2147/DMSO.S58786

    Article  PubMed  PubMed Central  Google Scholar 

  57. Maciejczyk M, Matczuk J, Zendzian-Piotrowska M, Niklinska W, Fejfer K, Szarmach I, Ladny JR, Zieniewska I, Zalewska A (2018) Eight-week consumption of high-sucrose diet has a pro-oxidant effect and alters the function of the salivary glands of rats. Nutrients 10:1530. https://doi.org/10.3390/nu10101530

    Article  PubMed Central  Google Scholar 

  58. Dost P, Kaiser S (1997) Ultrasonographic biometry in salivary glands. Ultrasound Med Biol 23:1299–1303. https://doi.org/10.1016/s0301-5629(97)00152-x

    Article  PubMed  Google Scholar 

  59. Brown M, Bing C, King P, Pickavance L, Heal D, Wilding J (2001) Sibutramine reduces feeding, body fat and improves insulin resistance in dietary-obese male Wistar rats independently of hypothalamic neuropeptide Y. Br J Pharmacol 132:1898–1904. https://doi.org/10.1038/sj.bjp.0704030

    Article  PubMed  PubMed Central  Google Scholar 

  60. Amano O, Mizobe K, Bando Y, Sakiyama K (2012) Anatomy and histology of rodent and human major salivary glands: -overview of the Japan salivary gland society-sponsored workshop. Acta Histochem Cytochem 45:241–250. https://doi.org/10.1267/ahc.12013

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mozaffari MS, Abdelsayed R, Zakhary I, El-Salanty M, Liu JY, Wimborne H, El-Marakby A (2011) Submandibular gland and caries susceptibility in the obese Zucker rat. J Oral Pathol Medicine 40:194–200. https://doi.org/10.1111/j.1600-0714.2010.00965.x

    Article  Google Scholar 

  62. da Silva S, de Azevedo LR, de Lima AA, Ignacio SA, Machado MA, ZacliKevis MV, Gregio AM (2009) Effects of fluoxetine and venlafaxine and pilocarpine on rat parotid glands. Med Chem 5:483–490. https://doi.org/10.2174/157340609789117868

    Article  PubMed  Google Scholar 

  63. Koller MM, Cowman RA, Humphreys-Beher MG, Scarpace PJ (2000) An analysis of submandibular salivary gland function with desipramine and age in female NIA Fischer 344 rats. Mech Ageing Dev 119:131–147. https://doi.org/10.1016/s0047-6374(00)00176-7

    Article  PubMed  Google Scholar 

  64. Koller MM, Purushotham KR, Maeda N, Scarpace PJ, Humphreys-Beher MG (2000) Desipramine induced changes in salivary proteins, cultivable oral microbiota and gingival health in aging female NIA Fischer 344 rats. Life Sci 68:445–455. https://doi.org/10.1016/s0024-3205(00)00951-6

    Article  PubMed  Google Scholar 

  65. Mattioli TM, Silva S, Gregio AM, Machado MA, Lima AA, Alanis LR (2011) The effects of antidepressants and pilocarpine on rat parotid glands: an immunohistochemical study. Clinics 66:1605–1610. https://doi.org/10.1590/s1807-59322011000900017

    Article  PubMed  PubMed Central  Google Scholar 

  66. Jackson HC, Needham AM, Hutchins LJ, Mazurkiewicz SE, Heal DJ (1997) Comparison of the effects of sibutramine and other monoamine reuptake inhibitors on food intake in the rat. Br J Pharmacol 121:1758–1762. https://doi.org/10.1038/sj.bjp.0701312

    Article  PubMed  PubMed Central  Google Scholar 

  67. Naini A, Morgan B, Mandel ID (1989) Effect of protein malnutrition on the composition of submandibular glands of aged rats. Arch Oral Biol 34:985–988. https://doi.org/10.1016/0003-9969(89)90056-3

    Article  PubMed  Google Scholar 

  68. Johnson DA, Lopez H, Navia JM (1995) Effects of protein deficiency and diet consistency on the parotid gland and parotid saliva of rats. J Dent Res 74:1444–1452. https://doi.org/10.1177/00220345950740080301

    Article  PubMed  Google Scholar 

  69. Hata F, Yagasaki O (1989) Re-evaluation of the stimulatory effect of norepinephrine on the secretion of amylase in the parotid gland of the rat. Neuropharmacology 28:1099–1105. https://doi.org/10.1016/0028-3908(89)90123-8

    Article  PubMed  Google Scholar 

  70. Proctor GB, Asking B, Garrett JR (1990) Effects of parasympathectomy on protein composition of sympathetically evoked parotid saliva in rats. Comp Biochem Physiol A Comp Physiol 97:335–339. https://doi.org/10.1016/0300-9629(90)90620-8

    Article  PubMed  Google Scholar 

  71. Garrett JR, Suleiman AM, Anderson LC, Proctor GB (1991) Secretory responses in granular ducts and acini of submandibular glands in vivo to parasympathetic or sympathetic nerve stimulation in rats. Cell Tissue Res 264:117–126. https://doi.org/10.1007/BF00305729

    Article  PubMed  Google Scholar 

  72. Fukui H, Miwa E, Iwachido T, Kitaura H, Furukawa H (2010) Various emetogens increase the secretion of salivary amylase in rats: a potential model in emesis research. J Pharmacol Sci 113:143–152. https://doi.org/10.1254/jphs.10037fp

    Article  PubMed  Google Scholar 

  73. Woolard J, Bennett T, Dunn WR, Heal DJ, Aspley S, Gardiner SM (2004) Acute cardiovascular effects of sibutramine in conscious rats. J Pharmacol Exp Ther 308:1102–1110. https://doi.org/10.1124/jpet.103.061259

    Article  PubMed  Google Scholar 

  74. Heusser K, Engeli S, Tank J, Diedrich A, Wiesner S, Janke J, Luft FC, Jordan J (2007) Sympathetic vasomotor tone determines blood pressure response to long-term sibutramine treatment. J Clin Endocrinol Metab 92:1560–1563. https://doi.org/10.1210/jc.2006-2499

    Article  PubMed  Google Scholar 

  75. Van Nueten JM, Janssens WJ, Vanhoutte PM (1985) Serotonin and vascular reactivity. Pharmacol Res Commun 17:585–608. https://doi.org/10.1016/0031-6989(85)90067-0

    Article  PubMed  Google Scholar 

  76. Delaney C, Gien J, Grover TR, Roe G, Abman SH (2011) Pulmonary vascular effects of serotonin and selective serotonin reuptake inhibitors in the late-gestation ovine fetus. Am J Physiol Lung Cell Mol Physiol 301:L937–L944. https://doi.org/10.1152/ajplung.00198.2011

    Article  PubMed  PubMed Central  Google Scholar 

  77. Abdelmawla AH, Langley RW, Szabadi E, Bradshaw CM (1999) Comparison of the effects of venlafaxine, desipramine, and paroxetine on noradrenaline- and methoxamine-evoked constriction of the dorsal hand vein. Br J Clin Pharmacol 48:345–354. https://doi.org/10.1046/j.1365-2125.1999.00031.x

    Article  PubMed  PubMed Central  Google Scholar 

  78. Guzman DC, Ruiz NL, Garcia EH, Mejia GB, Tellez PP, Jimenez GE, De la Rosa Apreza M and Olguin HJ (2009) Effect of sibutramine on Na+, K+ ATPase activity and tryptophan levels on male and female rat brain. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme 41:363–7. https://doi.org/10.1055/s-0028-1128145

  79. Suliburska J, Bogdanski P, Szulinska M, Pupek-Musialik D (2012) Short-term effects of sibutramine on mineral status and selected biochemical parameters in obese women. Biol Trace Elem Res 149:163–170. https://doi.org/10.1007/s12011-012-9425-6

    Article  PubMed  PubMed Central  Google Scholar 

  80. Araldi RP, Santos NP, Mendes TB, Carvalho LB, Ito ET, de-Sa-Junior PL, Souza EB (2015) Can Spirulina maxima reduce the mutagenic potential of sibutramine? Genet Mol Res: GMR 14:18452–18464. https://doi.org/10.4238/2015.December.23.33

    Article  PubMed  Google Scholar 

  81. Morikawa Y, Shibata A, Okumura N, Ikari A, Sasajima Y, Suenami K, Sato K, Takekoshi Y, El-Kabbani O, Matsunaga T (2017) Sibutramine provokes apoptosis of aortic endothelial cells through altered production of reactive oxygen and nitrogen species. Toxicol Appl Pharmacol 314:1–11. https://doi.org/10.1016/j.taap.2016.11.003

    Article  PubMed  Google Scholar 

  82. Cakmak Karaer I, Simsek G, Yildiz A, Vardi N, Polat A, Tanbek K, Gurocak S, Parlakpinar H (2016) Melatonin’s protective effect on the salivary gland against ionized radiation damage in rats. J Oral Pathol Med 45:444–449. https://doi.org/10.1111/jop.12386

    Article  PubMed  Google Scholar 

  83. Zalewska A, Knas M, Maciejczyk M, Waszkiewicz N, Klimiuk A, Choromanska M, Matczuk J, Waszkiel D, Car H (2015) Antioxidant profile, carbonyl and lipid oxidation markers in the parotid and submandibular glands of rats in different periods of streptozotocin induced diabetes. Arch Oral Biol 60:1375–1386. https://doi.org/10.1016/j.archoralbio.2015.06.012

    Article  PubMed  Google Scholar 

  84. Leite MF, Lima AM, Massuyama MM, Otton R (2010) Astaxanthin restores the enzymatic antioxidant profile in salivary gland of alloxan-induced diabetic rats. Arch Oral Biol 55:479–485. https://doi.org/10.1016/j.archoralbio.2010.04.006

    Article  PubMed  Google Scholar 

  85. Sakai M, Matsushita T, Hoshino R, Ono H, Ikai K, Sakai T (2017) Identification of the protective mechanisms of Lactoferrin in the irradiated salivary gland. Sci Rep 7:9753. https://doi.org/10.1038/s41598-017-10351-9

    Article  PubMed  PubMed Central  Google Scholar 

  86. Limesand KH, Barzen KA, Quissell DO, Anderson SM (2003) Synergistic suppression of apoptosis in salivary acinar cells by IGF1 and EGF. Cell Death Differ 10:345–355. https://doi.org/10.1038/sj.cdd.4401153

    Article  PubMed  Google Scholar 

  87. Li SS, Wu CZ, Zhang BW, Qiu L, Chen W, Yuan YH, Liu XC, Li CJ, Li LJ (2021) Nerve growth factor protects salivary glands from irradiation-induced damage. Life Sci 265:118748. https://doi.org/10.1016/j.lfs.2020.118748

    Article  PubMed  Google Scholar 

  88. Xiang B, Han L, Wang X, Tang L, Li K, Li X, Zhao X, Xia M, Zhou X, Zhang F, Liu KJ (2016) Nicotinamide phosphoribosyltransferase upregulation by phenylephrine reduces radiation injury in submandibular gland. Int J Radiat Oncol Biol Phys 96:538–546. https://doi.org/10.1016/j.ijrobp.2016.06.2442

    Article  PubMed  Google Scholar 

  89. Ferreira GM, Nazar BP, da Silva MR, Carriello MA, Freitas S, Appolinario JC (2018) Misuse of sibutramine and bulimia nervosa: a dangerous combination. Rev Bras Psiquiatr 40:343. https://doi.org/10.1590/1516-4446-2018-0004

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kim SH, Lee J, Yoon T, Choi J, Choi D, Kim D, Kwon SW (2009) Simultaneous determination of anti-diabetes/anti-obesity drugs by LC/PDA, and targeted analysis of sibutramine analog in dietary supplements by LC/MS/MS. Biomed Chromatogr: BMC 23:1259–1265. https://doi.org/10.1002/bmc.1248

    Article  PubMed  Google Scholar 

Download references

Funding

AHCN was financially supported through a grant by the Brazilian agency National Counsel of Technological and Scientific Development (CNPq; process no. 457912/2014–6, Edital Universal MCTI/CNPq Nº 01/2016) and the Pro-Rectory of Research of UNESP (PROPe-UNESP): N° 284/001/2017-PROPe and N° 158/006/2018-PROPe. HAO and TBR were also supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; process no. 2016/17385–0 and 2018/21479–6), and HAO and ROS were also supported by PROPe-UNESP (process no. 40816/2016 and 49968/2018).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Damáris Raissa dos Santos, Gabriela Alice Fiais, Henrique Arnaldo Oliveira, Tayná Buffulin Ribas, Rayne Oliveira Souza, Thaís Verônica Saori Tsosura, Doris Hissako Matsushita, Edilson Ervolino, Rita Cássia Menegati Dornelles, Ana Cláudia de Melo Stevanato Nakamune, and Antonio Hernandes Chaves-Neto. The first draft of the manuscript was written by Damáris Raissa dos Santos, Gabriela Alice Fiais, Rita Cássia Menegati Dornelles, Ana Cláudia de Melo Stevanato Nakamune, and Antonio Hernandes Chaves-Neto. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Antonio Hernandes Chaves-Neto.

Ethics declarations

Ethics approval

The study was conducted according to national (CONCEA—National Association for Animals Experiments Control: http://concea.mct.gov.br) and institutional laws and was approved by the Ethics Committee on Animal Use (CEUA), of the São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil (Authorization Protocol 00301–2016). All surgeries were performed under ketamine anesthesia, and all efforts were made to minimize suffering.

Informed consent

For this type of study, formal consent is not required.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

dos Santos, D.R., Fiais, G.A., Oliveira, H.A. et al. Assessment of redox state and biochemical parameters of salivary glands in rats treated with anti-obesity drug sibutramine hydrochloride. Clin Oral Invest (2022). https://doi.org/10.1007/s00784-022-04539-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00784-022-04539-1

Keywords

  • Sibutramine hydrochloride
  • Anti-obesity agents
  • Parotid gland
  • Submandibular gland
  • Oxidative stress