Skip to main content

Advertisement

Log in

Influence of acidic pH on antimicrobial activity of different calcium silicate based–endodontic sealers

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

To investigate the antibacterial activity of calcium silicate–based sealers (CSBSs) against Enterococcus faecalis biofilm in a neutral or acidic condition.

Materials and methods

Dentin cylinders (4 mm length) were prepared and infected with 3-week-old E. faecalis. The samples were filled with BioRoot RCS (BR), EndoSequence BC (ES), and NeoMTA Plus (NMTA) and incubated in either neutral or acidic conditions for 7 days (n=10/group). Sterile or infected samples alone were used as the positive and negative control. The root canal sealers were removed after 7 days, and the remaining bacteria on dentinal walls were determined by colony-forming units (CFUs/ml), and three samples from each group were visualized under a confocal laser scanning microscope (CLSM). The pH was also measured (n=3/group) after 4 h and 7 days of incubation at 37°C in both conditions.

Results

In the neutral condition, all sealers significantly decreased the log-CFU values (p<0.05), while in the acidic condition, the log-CFU reduction was less for ES and NMTA, but a higher reduction was observed in BR (p<0.05). The antibacterial activity of CSBSs was similar in neutral conditions (p>0.05), and BR showed a greater antibacterial effect than ES and NMTA in the acidic condition (p<0.05). The pH of BR, ES, and NMTA ranged from 8.2 to 8.8 in the neutral condition in the presence of dentin after 7 days. However, acidic conditions reduced the pH values to 7.8 for BR, 6.0 for ES, and 5.8 for NMTA.

Conclusions

All CSBSs showed similar antibacterial activity in neutral conditions, while acidic pH had a reducing antibacterial effect on CSBSs.

Clinical relevance

Inflammatory pH decreased the antibacterial properties of CSBSs depending on the sealer type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nair PN, Henry S, Cano V, Vera J (2005) Microbial status of apical root canal system of human mandibular first molars with primary apical periodontitis after “one-visit” endodontic treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 99:231–52. https://doi.org/10.1016/j.tripleo.2004.10.005

    Article  PubMed  Google Scholar 

  2. Zhang H, Shen Y, Ruse ND, Haapasalo M (2009) Antibacterial activity of endodontic sealers by modified direct contact test against Enterococcus faecalis. J Endod 35:1051–5. https://doi.org/10.1016/j.joen.2009.04.022

    Article  PubMed  Google Scholar 

  3. Silva Almeida LH, Moraes RR, Morgental RD, Pappen FG (2017) Are premixed calcium silicate-based endodontic sealers comparable to conventional materials? A systematic review of in vitro studies. J Endod 43:527–535. https://doi.org/10.1016/j.joen.2016.11.019

    Article  PubMed  Google Scholar 

  4. Alsubait S, Albader S, Alajlan N, Alkhunaini N, Niazy A, Almahdy A (2019) Comparison of the antibacterial activity of calcium silicate- and epoxy resin-based endodontic sealers against Enterococcus faecalis biofilms: a confocal laser-scanning microscopy analysis. Odontology 107:513–520. https://doi.org/10.1007/s10266-019-00425-7

    Article  PubMed  Google Scholar 

  5. Jeanneau C, Giraud T, Laurent P, About I (2019) BioRoot RCS extracts modulate the early mechanisms of periodontal inflammation and regeneration. J Endod 45:1016–1023. https://doi.org/10.1016/j.joen.2019.04.003

    Article  PubMed  Google Scholar 

  6. Siboni F, Taddei P, Prati C, Gandolfi M (2017) Properties of NeoMTA Plus and MTA Plus cements for endodontics. Int Endod J 50:e83–e94. https://doi.org/10.1111/iej.12787

    Article  PubMed  Google Scholar 

  7. Pinheiro LS, Iglesias JE, Boijink D, Mestieri LB, Poli Kopper PM, Figueiredo JAP, Grecca FS (2018) Cell viability and tissue reaction of NeoMTA Plus: an in vitro and in vivo study. J Endod 44:1140–1145. https://doi.org/10.1016/j.joen.2018.03.007

    Article  PubMed  Google Scholar 

  8. Siboni F, Taddei P, Prati C, Gandolfi MG (2017) Properties of NeoMTA Plus and MTA Plus cements for endodontics. Int Endod J 50(Suppl 2):e83–e94. https://doi.org/10.1111/iej.12787

    Article  PubMed  Google Scholar 

  9. Taha NA, Al-Khatib H (2022) 4-year follow-up of full pulpotomy in symptomatic mature permanent teeth with carious pulp exposure using a stainproof calcium silicate-based material. J Endod 48:87–95. https://doi.org/10.1016/j.joen.2021.09.008

    Article  PubMed  Google Scholar 

  10. De-Deus G, Canabarro A (2017) Strength of recommendation for single-visit root canal treatment: grading the body of the evidence using a patient-centred approach. Int Endod J 50:251–259. https://doi.org/10.1111/iej.12621

    Article  PubMed  Google Scholar 

  11. Paredes-Vieyra J, Enriquez FJJ (2012) Success rate of single- versus two-visit root canal treatment of teeth with apical periodontitis: a randomized controlled trial. J Endod 38:1164–1169. https://doi.org/10.1016/j.joen.2012.05.021

    Article  PubMed  Google Scholar 

  12. Su Y, Wang C, Ye L (2011) Healing rate and post-obturation pain of single- versus multiple-visit endodontic treatment for infected root canals: a systematic review. J Endod 37:125–132. https://doi.org/10.1016/j.joen.2010.09.005

    Article  PubMed  Google Scholar 

  13. Hojo S, Komatsu M, Okuda R, Takahashi N, Yamada T (1994) Acid profiles and pH of carious dentin in active and arrested lesions. J Dent Res 73:1853–7. https://doi.org/10.1177/00220345940730121001

    Article  PubMed  Google Scholar 

  14. Baras BH, Sun J, Melo MAS, Tay FR, Oates TW, Zhang K, Weir MD, Xu HHK (2019) Novel root canal sealer with dimethylaminohexadecyl methacrylate, nano-silver and nano-calcium phosphate to kill bacteria inside root dentin and increase dentin hardness. Dent Mater 35:1479–1489. https://doi.org/10.1016/j.dental.2019.07.014

    Article  PubMed  Google Scholar 

  15. Roy CO, Jeansonne BG, Gerrets TF (2001) Effect of an acid environment on leakage of root-end filling materials. J Endod 27:7–8. https://doi.org/10.1097/00004770-200101000-00002

    Article  PubMed  Google Scholar 

  16. Nassar M, Hiraishi N, Tamura Y, Otsuki M, Aoki K, Tagami J (2015) Phytic acid: an alternative root canal chelating agent. J Endod 41:242–247

    Article  Google Scholar 

  17. Neelakantan P, Berger T, Primus C, Shemesh H, Wesselink PR (2019) Acidic and alkaline chemicals’ influence on a tricalcium silicate-based dental biomaterial. J Biomed Mater Res B Appl Biomater 107:377–387. https://doi.org/10.1002/jbm.b.34129

    Article  PubMed  Google Scholar 

  18. Ashofteh Yazdi K, Ghabraei S, Bolhari B, Kafili M, Meraji N, Nekoofar MH, Dummer PMH (2019) Microstructure and chemical analysis of four calcium silicate-based cements in different environmental conditions. Clin Oral Investig 23:43–52. https://doi.org/10.1007/s00784-018-2394-1

    Article  PubMed  Google Scholar 

  19. Elnaghy AM (2014) Influence of acidic environment on properties of biodentine and white mineral trioxide aggregate: a comparative study. J Endod 40:953–957. https://doi.org/10.1016/j.joen.2013.11.007

    Article  PubMed  Google Scholar 

  20. Wang Z, Ma J, Shen Y, Haapasalo M (2015) Acidic pH weakens the microhardness and microstructure of three tricalcium silicate materials. Int Endod J 48:323–332. https://doi.org/10.1111/iej.12318

    Article  PubMed  Google Scholar 

  21. Azim AA, Aksel H, Zhuang T, Mashtare T, Babu JP, Huang GT-J (2016) Efficacy of 4 irrigation protocols in killing bacteria colonized in dentinal tubules examined by a novel confocal laser scanning microscope analysis. J Endod 42:928–934. https://doi.org/10.1016/j.joen.2016.03.009

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bukhari S, Karabucak B (2019) The antimicrobial effect of bioceramic sealer on an 8-week matured Enterococcus faecalis biofilm attached to root canal dentinal surface. J Endod 45:1047–1052. https://doi.org/10.1016/j.joen.2019.04.004

    Article  PubMed  Google Scholar 

  23. Urban K, Neuhaus J, Donnermeyer D, Schäfer E, Dammaschke T (2018) Solubility and pH value of 3 different root canal sealers: a long-term investigation. J Endod 44:1736–1740. https://doi.org/10.1016/j.joen.2018.07.026

    Article  PubMed  Google Scholar 

  24. Wang Z, Shen Y, Haapasalo M (2014) Dentin extends the antibacterial effect of endodontic sealers against Enterococcus faecalis biofilms. J Endod 40:505–8. https://doi.org/10.1016/j.joen.2013.10.042

    Article  PubMed  Google Scholar 

  25. Stuart CH, Schwartz SA, Beeson TJ, Owatz CB (2006) Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. J Endod 32:93–8. https://doi.org/10.1016/j.joen.2005.10.049

    Article  PubMed  Google Scholar 

  26. Sedgley CM, Lee EH, Martin MJ, Flannagan SE (2008) Antibiotic resistance gene transfer between Streptococcus gordonii and Enterococcus faecalis in root canals of teeth ex vivo. J Endod 34:570–4. https://doi.org/10.1016/j.joen.2008.02.014

    Article  PubMed  Google Scholar 

  27. Bronzato JD, Davidian MES, de Castro M, de-Jesus-Soares A, Ferraz CCR, Almeida JFA, Marciano MA, Gomes B (2021) Bacteria and virulence factors in periapical lesions associated with teeth following primary and secondary root canal treatment. Int Endod J 54:660–671https://doi.org/10.1111/iej.13457

  28. Kapralos V, Koutroulis A, Ørstavik D, Sunde PT, Rukke HV (2018) Antibacterial activity of endodontic sealers against planktonic bacteria and bacteria in biofilms. J Endod 44:149–154. https://doi.org/10.1016/j.joen.2017.08.023

    Article  PubMed  Google Scholar 

  29. Faria-Júnior NB, Tanomaru-Filho M, Berbert FL, Guerreiro-Tanomaru JM (2013) Antibiofilm activity, pH and solubility of endodontic sealers. Int Endod J 46:755–62. https://doi.org/10.1111/iej.12055

    Article  PubMed  Google Scholar 

  30. Candeiro GTM, Moura-Netto C, D’Almeida-Couto RS, Azambuja-Júnior N, Marques MM, Cai S, Gavini G (2016) Cytotoxicity, genotoxicity and antibacterial effectiveness of a bioceramic endodontic sealer. Int Endod J 49:858–864. https://doi.org/10.1111/iej.12523

    Article  PubMed  Google Scholar 

  31. Tian J, Zhang Y, Lai Z, Li M, Huang Y, Jiang H, Wei X (2017) Ion release, microstructural, and biological properties of iRoot BP Plus and ProRoot MTA exposed to an acidic environment. J Endod 43:163–168. https://doi.org/10.1016/j.joen.2016.10.011

    Article  PubMed  Google Scholar 

  32. Rodríguez-Lozano FJ, Collado-González M, López-García S, García-Bernal D, Moraleda JM, Lozano A, Forner L, Murcia L, Oñate-Sánchez RE (2019) Evaluation of changes in ion release and biological properties of NeoMTA-Plus and Endocem-MTA exposed to an acidic environment. Int Endod J 52:1196–1209. https://doi.org/10.1111/iej.13107

    Article  PubMed  Google Scholar 

  33. Barros J, Silva MG, Rôças IN, Gonçalves LS, Alves FF, Lopes MA, Pina-Vaz I, Siqueira JF Jr (2014) Antibiofilm effects of endodontic sealers containing quaternary ammonium polyethylenimine nanoparticles. J Endod 40:1167–71. https://doi.org/10.1016/j.joen.2013.12.021

    Article  PubMed  Google Scholar 

  34. Zhang W, Li Z, Peng B (2010) Ex vivo cytotoxicity of a new calcium silicate-based canal filling material. Int Endod J 43:769–74. https://doi.org/10.1111/j.1365-2591.2010.01733.x

    Article  PubMed  Google Scholar 

  35. Farhad A, Mohammadi Z (2005) Calcium hydroxide: a review. Int Dent J 55:293–301. https://doi.org/10.1111/j.1875-595x.2005.tb00326.x

    Article  PubMed  Google Scholar 

  36. Koutroulis A, Kuehne SA, Cooper PR, Camilleri J (2019) The role of calcium ion release on biocompatibility and antimicrobial properties of hydraulic cements. Sci Rep 9:19019. https://doi.org/10.1038/s41598-019-55288-3

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zehnder M, Waltimo T, Sener B, Soderling E (2006) Dentin enhances the effectiveness of bioactive glass S53P4 against a strain of Enterococcus faecalis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101:530–5. https://doi.org/10.1016/j.tripleo.2005.03.014

    Article  PubMed  Google Scholar 

  38. Nerwich AH, Figdor D, Messer HH (1993) pH changes in root dentine following calcium hydroxide intracanal dressing. Aust Endod Newsl 19:30–31. https://doi.org/10.1111/j.1747-4477.1993.tb00393.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors deny any conflicts of interest related to this study. CLSM images were taken at the University at Buffalo Optical Imaging and Analysis Facility, and we would like to thank Andrew McCall for his guidance during image processing.

Funding

This study was supported by the faculty funding from the University at Buffalo Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hacer Aksel or Adham A. Azim.

Ethics declarations

Ethics approval

This study is exempted for the ethical approval.

Consent to participate

The formal consent is not required due to the type of the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosaid, F., Aksel, H. & Azim, A.A. Influence of acidic pH on antimicrobial activity of different calcium silicate based–endodontic sealers. Clin Oral Invest 26, 5369–5376 (2022). https://doi.org/10.1007/s00784-022-04504-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-022-04504-y

Keywords

Navigation