Skip to main content

Advertisement

Log in

Effect of different polishing techniques on surface properties and bacterial adhesion on resin-ceramic CAD/CAM materials

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The aim of this study is to evaluate the adhesion of Streptococcus mutans on the surface of CAD/CAM materials with various surface treatments.

Methods

Vita Enamic, Lava Ultimate, and Cerasmart materials were used in this study. A total of 90 samples were prepared (n = 10). After various finishing and polishing procedures (non-polished, manual polished, and glazed), surface roughness (SR) measurements, surface free energy (SFE), and elemental and topographic analysis with FIB-SEM/EDX were used to evaluate the samples’ surface properties. To improve bacterial adhesion, CAD/CAM materials were covered with sterile artificial saliva containing mucin for pellicle formation and incubated for 1 h at 37 °C. Bacteria were then inoculated into the pellicle-coated specimens, and incubation was performed at 37 °C for 24 h. Bacterial adhesion was determined as × 105 CFU/mL and monitored using FIB-SEM analysis. The Kolmogorov–Smirnov test was used to statistically analyze the normality of the distribution; the groups were then compared using one-way ANOVA and Tukey’s test.

Results

The SR of the control group was statistically higher in all materials (p < 0.05). There were no statistically significant differences in SR between all materials in the non-polished and manual polished groups (p > 0.05). The Vita Enamic control group exhibited the highest SFE value. The highest S. mutans adhesion was observed in non-polished (p < 0.05). Vita Enamic samples had higher CFU than other groups.

Conclusions

Non-polished surfaces showed higher SR and bacterial adhesion. Polishing processes affected the surface properties and bacterial adhesion.

Clinical relevance

Care must be taken in polishing restorations to minimize the risk of bacterial adhesion and recurrent caries.

Trial registration

In this study, the materials used for dental treatments are in vitro evaluated. Due to that, this study is not registered to clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rekow ED (2006) Dental CAD/CAM systems: a 20-year success story. J Am Dent Assoc 137:5S-6S. https://doi.org/10.14219/jada.archive.2006.0396

    Article  PubMed  Google Scholar 

  2. Joda T, Zarone F, Ferrari M (2017) The complete digital workflow in fixed prosthodontics: a systematic review. BMC Oral Health 17:1–9. https://doi.org/10.1186/s12903-017-0415-0

    Article  Google Scholar 

  3. Tordiglione L, De Franco M, Bosetti G (2016) The prosthetic workflow in the digital era. Int J Dent. https://doi.org/10.1155/2016/9823025

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fasbinder DJ (2010) Materials for chairside CAD/CAM restorations. Compend Contin Educ Dent 31:702–704

    PubMed  Google Scholar 

  5. He L-H, Swain M (2011) A novel polymer infiltrated ceramic dental material. Dent Mater 27:527–534. https://doi.org/10.1016/j.dental.2011.02.002

    Article  PubMed  Google Scholar 

  6. Koller M, Arnetzl G, Holly L, Arnetzl G (2012) Lava ultimate resin nano ceramic for CAD/CAM: customization case study. Int J Comput Dent 15:159–164

    PubMed  Google Scholar 

  7. Kamonkhantikul K, Arksornnukit M, Lauvahutanon S, Takahashi H (2016) Toothbrushing alters the surface roughness and gloss of composite resin CAD/CAM blocks. Dent Mater J 35:225–232. https://doi.org/10.4012/dmj.2015-228

    Article  PubMed  Google Scholar 

  8. Coldea A, Swain MV, Thiel N (2013) Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent Mater 29:419–426. https://doi.org/10.1016/j.dental.2013.01.002

    Article  PubMed  Google Scholar 

  9. Koizumi H, Saiki O, Nogawa H, Hiraba H, Okazaki T, Matsumura H (2015) Surface roughness and gloss of current CAD/CAM resin composites before and after toothbrush abrasion. Dent Mater J 34:881–887. https://doi.org/10.4012/dmj.2015-177

    Article  PubMed  Google Scholar 

  10. Lauvahutanon S, Takahashi H, Shiozawa M, Iwasaki N, Asakawa Y, Oki M, Finger WJ, Arksornnukit M (2014) Mechanical properties of composite resin blocks for CAD/CAM. Dent Mater J 33:705–710. https://doi.org/10.4012/dmj.2014-208

    Article  PubMed  Google Scholar 

  11. Mainjot A, Dupont N, Oudkerk J, Dewael T, Sadoun M (2016) From artisanal to CAD-CAM blocks: state of the art of indirect composites. J Dent Res 95:487–495. https://doi.org/10.1177/0022034516634286

    Article  PubMed  Google Scholar 

  12. Sideridou I, Tserki V, Papanastasiou G (2002) Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials 23:1819–1829. https://doi.org/10.1016/s0142-9612(01)00308-8

    Article  PubMed  Google Scholar 

  13. Goujat A, Abouelleil H, Colon P, Jeannin C, Pradelle N, Seux D, Grosgogeat B (2018) Mechanical properties and internal fit of 4 CAD-CAM block materials. J Prosthet Dent 119:384–389. https://doi.org/10.1016/j.prosdent.2017.03.001

    Article  PubMed  Google Scholar 

  14. Ruse N, Sadoun M (2014) Resin-composite blocks for dental CAD/CAM applications. J Dent Res 93:1232–1234. https://doi.org/10.1177/0022034514553976

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yu B, Ahn J-S, Lee Y-K (2009) Measurement of translucency of tooth enamel and dentin. Acta Odontol Scand 67:57–64. https://doi.org/10.1080/00016350802577818

    Article  PubMed  Google Scholar 

  16. Pires-de FdCP, Casemiro LA, Garcia LdFR, Cruvinel DR (2009) Color stability of dental ceramics submitted to artificial accelerated aging after repeated firings. J Prosthet Dent 101:13–18. https://doi.org/10.1016/S0022-3913(08)60282-6

    Article  Google Scholar 

  17. Turgut S, Bagis B, Turkaslan SS, Bagis YH (2014) Effect of ultraviolet aging on translucency of resin-cemented ceramic veneers: an in vitro study. J Prosthodont 23:39–44. https://doi.org/10.1111/jopr.12061

    Article  PubMed  Google Scholar 

  18. Sagsoz O, Demirci T, Demirci G, Sagsoz NP, Yildiz M (2016) The effects of different polishing techniques on the staining resistance of CAD/CAM resin-ceramics. J Adv Prosthodont 8:417–422. https://doi.org/10.4047/jap.2016.8.6.417

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jefferies SR (1998) The art and science of abrasive finishing and polishing in restorative dentistry. Dent Clin N Am 42:613–627. https://doi.org/10.1016/j.cden.2006.12.002

    Article  PubMed  Google Scholar 

  20. Ryba TM, Dunn WJ, Murchison DF (2002) Surface roughness of various packable composites. Oper Dent 27:243–247

    PubMed  Google Scholar 

  21. Busscher H, Rinastiti M, Siswomihardjo W, Van der Mei H (2010) Biofilm formation on dental restorative and implant materials. J Dent Res 89:657–665. https://doi.org/10.1177/0022034510368644

    Article  PubMed  Google Scholar 

  22. Bollen CM, Lambrechts P, Quirynen M (1997) Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater 13:258–269. https://doi.org/10.1016/s0109-5641(97)80038-3

    Article  PubMed  Google Scholar 

  23. Bilgili D, Dündar A, Barutçugil Ç, Tayfun D, Özyurt ÖK (2020) Surface properties and bacterial adhesion of bulk-fill composite resins. J Dent 95:103317. https://doi.org/10.1016/j.jdent.2020.103317

    Article  PubMed  Google Scholar 

  24. Ionescu A, Wutscher E, Brambilla E, Schneider-Feyrer S, Giessibl FJ, Hahnel S (2012) Influence of surface properties of resin-based composites on in vitro Streptococcus mutans biofilm development. Eur J Oral Sci 120:458–465. https://doi.org/10.1111/j.1600-0722.2012.00983.x

    Article  PubMed  Google Scholar 

  25. Ahn S-J, Lim B-S, Lee S-J (2010) Surface characteristics of orthodontic adhesives and effects on streptococcal adhesion. Am J Orthod Dentofacial Orthop 137:489–495. https://doi.org/10.1016/j.ajodo.2008.05.015

    Article  PubMed  Google Scholar 

  26. Eick S, Glockmann E, Brandl B, Pfister W (2004) Adherence of Streptococcus mutans to various restorative materials in a continuous flow system. J Oral Rehabil 31:278–285. https://doi.org/10.1046/j.0305-182X.2003.01233.x

    Article  PubMed  Google Scholar 

  27. Cazzaniga G, Ottobelli M, Ionescu AC, Paolone G, Gherlone E, Ferracane JL, Brambilla E (2017) In vitro biofilm formation on resin-based composites after different finishing and polishing procedures. J Dent 67:43–52. https://doi.org/10.1016/j.jdent.2017.07.012

    Article  PubMed  Google Scholar 

  28. Ionescu A, Brambilla E, Wastl DS, Giessibl FJ, Cazzaniga G, Schneider-Feyrer S, Hahnel S (2015) Influence of matrix and filler fraction on biofilm formation on the surface of experimental resin-based composites. J Mater Sci Mater Med 26:5372. https://doi.org/10.1007/s10856-014-5372-4

    Article  PubMed  Google Scholar 

  29. Aykent F, Yondem I, Ozyesil AG, Gunal SK, Avunduk MC, Ozkan S (2010) Effect of different finishing techniques for restorative materials on surface roughness and bacterial adhesion. J Prosthet Dent 103:221–227. https://doi.org/10.1016/S0022-3913(10)60034-0

    Article  PubMed  Google Scholar 

  30. Ikeda M, Matin K, Nikaido T, Foxton RM, Tagami J (2007) Effect of surface characteristics on adherence of S. mutans biofilms to indirect resin composites. Dent Mater J 26:915–923. https://doi.org/10.4012/dmj.26.915

    Article  PubMed  Google Scholar 

  31. Mei L, Busscher HJ, van der Mei HC, Ren Y (2011) Influence of surface roughness on streptococcal adhesion forces to composite resins. Dent Mater 27:770–778. https://doi.org/10.1016/j.dental.2011.03.017

    Article  PubMed  Google Scholar 

  32. Yuan C, Wang X, Gao X, Chen F, Liang X, Li D (2016) Effects of surface properties of polymer-based restorative materials on early adhesion of Streptococcus mutans in vitro. J Dent 54:33–40. https://doi.org/10.1016/j.jdent.2016.07.010

    Article  PubMed  Google Scholar 

  33. Ono M, Nikaido T, Ikeda M, Imai S, Hanada N, Tagami J, Matin K (2007) Surface properties of resin composite materials relative to biofilm formation. Dent Mater J 26:613–622. https://doi.org/10.4012/dmj.26.613

    Article  PubMed  Google Scholar 

  34. Kurt A, Cilingir A, Bilmenoglu C, Topcuoglu N, Kulekci G (2019) Effect of different polishing techniques for composite resin materials on surface properties and bacterial biofilm formation. J Dent 90:103199. https://doi.org/10.1016/j.jdent.2019.103199

    Article  PubMed  Google Scholar 

  35. de Oliveira ALBM, Domingos PADS, Palma-Dibb RG, Garcia PPNS (2012) Chemical and morphological features of nanofilled composite resin: influence of finishing and polishing procedures and fluoride solutions. Microsc Res Tech 75:212–219. https://doi.org/10.1002/jemt.21045

    Article  PubMed  Google Scholar 

  36. van Oss CJ, Chaudhury MK, Good RJ (1987) Monopolar surfaces. Adv Colloid Interface Sci 28:35–64. https://doi.org/10.1016/0001-8686(87)80008-8

    Article  PubMed  Google Scholar 

  37. Blake-Haskins J, Mellberg J, Snyder C (1992) Effect of calcium in model plaque on the anticaries activity of fluoride in vitro. J Dent Res 71:1482–1486. https://doi.org/10.1177/00220345920710080401

    Article  PubMed  Google Scholar 

  38. Kara D, Tekçe N, Fidan S, Demirci M, Tuncer S, Balcı S (2021) The effects of various polishing procedures on surface topography of CAD/CAM resin restoratives. J Prosthodont 30:481–489. https://doi.org/10.1111/jopr.13278

    Article  PubMed  Google Scholar 

  39. Hahnel S, Ionescu AC, Cazzaniga G, Ottobelli M, Brambilla E (2017) Biofilm formation and release of fluoride from dental restorative materials in relation to their surface properties. J Dent 60:14–24. https://doi.org/10.1016/j.jdent.2017.02.005

    Article  PubMed  Google Scholar 

  40. Ionescu AC, Hahnel S, König A, Brambilla E (2020) Resin composite blocks for dental CAD/CAM applications reduce biofilm formation in vitro. Dent Mater 36:603–616. https://doi.org/10.1016/j.dental.2020.03.016

    Article  PubMed  Google Scholar 

  41. Kawai K, Urano M, Ebisu S (2000) Effect of surface roughness of porcelain on adhesion of bacteria and their synthesizing glucans. J Prosthet Dent 83:664–667. https://doi.org/10.1016/S0022-3913(00)70068-0

    Article  PubMed  Google Scholar 

  42. Satou J, Fukunaga A, Morikawa A, Matsumae I, Satou N, Shintani H (1991) Streptococcal adherence to uncoated and saliva-coated restoratives. J Oral Rehabil 18:421–429. https://doi.org/10.1111/j.1365-2842.1991.tb01687.x

    Article  PubMed  Google Scholar 

  43. Milleding P, Gerdes S, Holmberg K, Karlsson S (1999) Surface energy of non-corroded and corroded dental ceramic materials before and after contact with salivary proteins. Eur J Oral Sci 107:384–392. https://doi.org/10.1046/j.0909-8836.1999.eos107510.x

    Article  PubMed  Google Scholar 

  44. Hannig M, Döbert A, Stigler R, Müller U, Prokhorova SA (2004) Initial salivary pellicle formation on solid substrates studied by AFM. J Nanosci Nanotechnol 4:532–538. https://doi.org/10.1166/jnn.2004.082

    Article  PubMed  Google Scholar 

  45. Ionescu AC, Cazzaniga G, Ottobelli M, Ferracane JL, Paolone G, Brambilla E (2018) In vitro biofilm formation on resin-based composites cured under different surface conditions. J Dent 77:78–86. https://doi.org/10.1016/j.jdent.2018.07.012

    Article  PubMed  Google Scholar 

  46. Ahn S-J, Park S-N, Lee YJ, Cho E-J, Lim YK, Li XM, Choi M-H, Seo Y-W, Kook J-K (2015) In vitro antimicrobial activities of 1-methoxyficifolinol, licorisoflavan A, and 6, 8-diprenylgenistein against Streptococcus mutans. Caries Res 49:78–89. https://doi.org/10.1159/000362676

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilber Bilgili Can.

Ethics declarations

Ethics approval

N/A

Informed consent

N/A

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özarslan, M., Bilgili Can, D., Avcioglu, N.H. et al. Effect of different polishing techniques on surface properties and bacterial adhesion on resin-ceramic CAD/CAM materials. Clin Oral Invest 26, 5289–5299 (2022). https://doi.org/10.1007/s00784-022-04497-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-022-04497-8

Keywords

Navigation