Skip to main content

Advertisement

Log in

Local delivery of a CXCR3 antagonist decreases the progression of bone resorption induced by LPS injection in a murine model

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

This experimental study was carried out to investigate the effects of locally delivered nanoparticles (AMG-487 NP) containing a CXCR3 antagonist in inhibiting the progression of LPS-induced inflammation, osteoclastic activity, and bone resorption on a murine model.

Materials and methods

Thirty, 7-week-old C57BL/6 J male mice were used. Inflammatory bone loss was induced by Porphyromonas gingivalis–lipopolysaccharide (P.g.-LPS) injections between the first and second maxillary molars, bilaterally, twice a week for 6 weeks (n = 20). AMG-487 NP were incorporated into a liposome carrier and locally delivered on sites where P.g.-LPS was injected. Control mice (n = 10) were injected with vehicle only. Experimental groups included (1) control, (2) LPS, and (3) LPS + NP. At the end of 1 and 6 weeks, mice were euthanized, maxillae harvested, fixed, and stored for further analysis.

Results

Volumetric bone loss analysis revealed, at 1 week, an increase in bone loss in the LPS group (47.9%) compared to control (27.4%) and LPS + NP (27.8%) groups. H&E staining demonstrated reduced inflammatory infiltrate in the LPS + NP group compared to LPS group. At 6 weeks, volumetric bone loss increased in all groups; however, treatment with the CXCR3 antagonist (LPS + NP) significantly reduced bone loss compared to the LPS group. CXCR3 antagonist treatment significantly reduced osteoclast numbers when compared to LPS group at 1 and 6 weeks.

Conclusions

This study showed that local delivery of a CXCR antagonist, via nanoparticles, in a bone resorption model, induced by LPS injection, was effective in reducing inflammation, osteoclast numbers, and bone loss.

Clinical relevance

CXCR3 blockade can be regarded as a novel target for therapeutic intervention of bone loss. It can be a safe and convenient method for periodontitis treatment or prevention applicable in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Papapanou PN, Sanz M, Buduneli N et al (2018) Periodontitis: consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Periodontol 89(Suppl 1):S173–S182

    Article  PubMed  Google Scholar 

  2. Hajishengallis G, Chavakis T, Lambris JD (2000) Current understanding of periodontal disease pathogenesis and targets for host-modulation therapy. Periodontol 2000 84(1):14–34

    Article  Google Scholar 

  3. Eke PI, Thornton-Evans GO, Wei L, Borgnakke WS, Dye BA, Genco RJ (2018) Periodontitis in US adults: National Health and Nutrition Examination Survey 2009–2014. J Am Dent Assoc 149(7):576–588 e576

  4. Petersen PE (2003) The World Oral Health Report 2003: continuous improvement of oral health in the 21st century–the approach of the WHO Global Oral Health Programme. Community Dent Oral Epidemiol 31(Suppl 1):3–23

    Article  PubMed  Google Scholar 

  5. Hajishengallis G, Darveau RP, Curtis MA (2012) The keystone-pathogen hypothesis. Nat Rev Microbiol 10(10):717–725

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sedghi L, DiMassa V, Harrington A, Lynch SV, Kapila YL (2021) The oral microbiome role of key organisms and complex networks in oral health and disease. Periodontol 2000 87(1):107–131

    Article  PubMed  PubMed Central  Google Scholar 

  7. Joseph S, Curtis MA (2021) Microbial transitions from health to disease. Periodontol 2000 86(1):201–209

    Article  PubMed  Google Scholar 

  8. Abusleme L, Hoare A, Hong BY, Diaz PI (2021) Microbial signatures of health, gingivitis, and periodontitis. Periodontol 2000 86(1):57–78

    Article  PubMed  Google Scholar 

  9. Jepsen S, Caton JG, Albandar JM et al (2018) Periodontal manifestations of systemic diseases and developmental and acquired conditions: consensus report of workgroup 3 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Periodontol 89(Suppl 1):S237–S248

    Article  PubMed  Google Scholar 

  10. Wade WG (2021) Resilience of the oral microbiome. Periodontol 2000 86(1):113–122

    Article  PubMed  Google Scholar 

  11. Darveau RP, Curtis MA (2021) Oral biofilms revisited: a novel host tissue of bacteriological origin. Periodontol 2000 86(1):8–13

    Article  PubMed  Google Scholar 

  12. Hajishengallis G, Lamont RJ (2021) Polymicrobial communities in periodontal disease Their quasi-organismal nature and dialogue with the host. Periodontol 2000 86(1):210–230

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pihlstrom BL, Michalowicz BS, Johnson NW (2005) Periodontal diseases. Lancet 366(9499):1809–1820

    Article  PubMed  Google Scholar 

  14. Hiyari S, Green E, Pan C et al (2018) Genomewide association study identifies Cxcl family members as partial mediators of LPS-induced periodontitis. J Bone Miner Res 33(8):1450–1463

    Article  PubMed  Google Scholar 

  15. Loetscher M, Gerber B, Loetscher P et al (1996) Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes. J Exp Med 184(3):963–969

    Article  PubMed  Google Scholar 

  16. Loetscher M, Loetscher P, Brass N, Meese E, Moser B (1998) Lymphocyte-specific chemokine receptor CXCR3: regulation, chemokine binding and gene localization. Eur J Immunol 28(11):3696–3705

    Article  PubMed  Google Scholar 

  17. Luster AD, Unkeless JC, Ravetch JV (1985) Gamma-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature 315(6021):672–676

    Article  PubMed  Google Scholar 

  18. Groom JR, Luster AD (2011) CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biol 89(2):207–215

    Article  PubMed  Google Scholar 

  19. Groom JR, Luster AD (2011) CXCR3 in T cell function. Exp Cell Res 317(5):620–631

    Article  PubMed  PubMed Central  Google Scholar 

  20. Groom JR, Richmond J, Murooka TT et al (2012) CXCR3 chemokine receptor-ligand interactions in the lymph node optimize CD4+ T helper 1 cell differentiation. Immunity 37(6):1091–1103

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dufour JH, Dziejman M, Liu MT, Leung JH, Lane TE, Luster AD (2002) IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J Immunol 168(7):3195–3204

    Article  PubMed  Google Scholar 

  22. Ichikawa A, Kuba K, Morita M et al (2013) CXCL10-CXCR3 enhances the development of neutrophil-mediated fulminant lung injury of viral and nonviral origin. Am J Respir Crit Care Med 187(1):65–77

    Article  PubMed  PubMed Central  Google Scholar 

  23. Igic M, Kostic M, Basic J et al (2020) Bleeding index and monocyte chemoattractant protein 1 as gingival inflammation parameters after chemical-mechanical retraction procedure. Med Princ Pract 29(5):492–498

    Article  PubMed  PubMed Central  Google Scholar 

  24. Garlet GP, Martins W Jr, Ferreira BR, Milanezi CM, Silva JS (2003) Patterns of chemokines and chemokine receptors expression in different forms of human periodontal disease. J Periodontal Res 38(2):210–217

    Article  PubMed  Google Scholar 

  25. Gemmell E, Carter CL, Seymour GJ (2001) Chemokines in human periodontal disease tissues. Clin Exp Immunol 125(1):134–141

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sakai A, Ohshima M, Sugano N, Otsuka K, Ito K (2006) Profiling the cytokines in gingival crevicular fluid using a cytokine antibody array. J Periodontol 77(5):856–864

    Article  PubMed  Google Scholar 

  27. Aldahlawi S, Youssef AR, Shahabuddin S (2018) Evaluation of chemokine CXCL10 in human gingival crevicular fluid, saliva, and serum as periodontitis biomarker. J Inflamm Res 11:389–396

    Article  PubMed  PubMed Central  Google Scholar 

  28. Guo X, Wang Y, Wang C, Chen J (2015) Identification of several hub-genes associated with periodontitis using integrated microarray analysis. Mol Med Rep 11(4):2541–2547

    Article  PubMed  Google Scholar 

  29. Guo YC, Chiu YH, Chen CP, Wang HS (2018) Interleukin-1beta induces CXCR3-mediated chemotaxis to promote umbilical cord mesenchymal stem cell transendothelial migration. Stem Cell Res Ther 9(1):281

    Article  PubMed  PubMed Central  Google Scholar 

  30. Walser TC, Rifat S, Ma X et al (2006) Antagonism of CXCR3 inhibits lung metastasis in a murine model of metastatic breast cancer. Cancer Res 66(15):7701–7707

    Article  PubMed  Google Scholar 

  31. Bakheet SA, Alrwashied BS, Ansari MA et al (2020) CXC chemokine receptor 3 antagonist AMG487 shows potent anti-arthritic effects on collagen-induced arthritis by modifying B cell inflammatory profile. Immunol Lett 225:74–81

    Article  PubMed  Google Scholar 

  32. Bakheet SA, Ansari MA, Nadeem A et al (2019) CXCR3 antagonist AMG487 suppresses rheumatoid arthritis pathogenesis and progression by shifting the Th17/Treg cell balance. Cell Signal 64:109395

    Article  PubMed  Google Scholar 

  33. Mudshinge SR, Deore AB, Patil S, Bhalgat CM (2011) Nanoparticles: emerging carriers for drug delivery. Saudi Pharm J 19(3):129–141

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kumar AJ, Anumala N, Avula H (2012) Novel and often bizarre strategies in the treatment of periodontal disease. J Indian Soc Periodontol 16(1):4–10

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cui ZK, Sun JA, Baljon JJ et al (2017) Simultaneous delivery of hydrophobic small molecules and siRNA using Sterosomes to direct mesenchymal stem cell differentiation for bone repair. Acta Biomater 58:214–224

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kim S, Cui ZK, Koo B, Zheng J, Aghaloo T, Lee M (2018) Chitosan-lysozyme conjugates for enzyme-triggered hydrogel degradation in tissue engineering applications. ACS Appl Mater Interfaces 10(48):41138–41145

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8(6):e1000412

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hiyari S, Atti E, Camargo PM et al (2015) Heritability of periodontal bone loss in mice. J Periodontal Res 50(6):730–736

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cui ZK, Bastiat G, Jin C, Keyvanloo A, Lafleur M (2010) Influence of the nature of the sterol on the behavior of palmitic acid/sterol mixtures and their derived liposomes. Biochim Biophys Acta 1798(6):1144–1152

    Article  PubMed  Google Scholar 

  40. Hiyari S, Wong RL, Yaghsezian A et al (2018) Ligature-induced peri-implantitis and periodontitis in mice. J Clin Periodontol 45(1):89–99

    Article  PubMed  Google Scholar 

  41. Pirih FQ, Michalski MN, Cho SW et al (2010) Parathyroid hormone mediates hematopoietic cell expansion through interleukin-6. PLoS One. 5(10):e13657

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chaichanasakul T, Kang B, Bezouglaia O, Aghaloo TL, Tetradis S (2014) Diverse osteoclastogenesis of bone marrow from mandible versus long bone. J Periodontol 85(6):829–836

    Article  PubMed  Google Scholar 

  43. Bakheet SA, Alrwashied BS, Ansari MA et al (2020) CXCR3 antagonist AMG487 inhibits glucocorticoid-induced tumor necrosis factor-receptor-related protein and inflammatory mediators in CD45 expressing cells in collagen-induced arthritis mouse model. Int Immunopharmacol 84:106494

    Article  PubMed  Google Scholar 

  44. Li Q, Yang G, Li J et al (2020) Stem cell therapies for periodontal tissue regeneration: a network meta-analysis of preclinical studies. Stem Cell Res Ther 11(1):427

    Article  PubMed  PubMed Central  Google Scholar 

  45. Vane J (1994) Towards a better aspirin. Nature 367(6460):215–216

    Article  PubMed  Google Scholar 

  46. McDonald JS, Cavanaugh PF, Pavelic LJ, Limardi RJ, Gluckman JL, Pavelic ZP (1997) Prostaglandin H synthase isoenzyme distribution in the gingival tissue of patients with periodontitis: pronounced expression adjacent to gram-positive bacteria. Inflammopharmacology 5(2):109–118

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by NIH/NIDCR DE023901-01 and the UCLA Faculty Development grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavia Q. Pirih.

Ethics declarations

Ethical approval

Not applicable.

Informed consent

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lari, S., Hiyari, S., de Araújo Silva, D.N. et al. Local delivery of a CXCR3 antagonist decreases the progression of bone resorption induced by LPS injection in a murine model. Clin Oral Invest 26, 5163–5169 (2022). https://doi.org/10.1007/s00784-022-04484-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-022-04484-z

Keywords

Navigation