Skip to main content

Advertisement

Log in

Impact of metal artefacts on subjective perception of image quality of 13 CBCT devices

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The overall objective of this study was to assess how metal artefacts impact image quality of 13 CBCT devices. As a secondary objective, the influence of scanning protocols and field of view on CBCT image quality with and without metal artefacts was also assessed.

Materials and methods

CBCT images were acquired of a dry human skull phantom considering three clinical simulated conditions: one without metal and two with metallic materials (metallic pin and implant). An industrial micro-CT was used as a reference to register the CBCT images. Afterwards, four observers evaluated 306 representative image slices from 13 devices, ranking them from best to worst. Furthermore, within each device, medium FOV and small FOV standard images were compared. General linear mixed models were used to assess subjective perception of examiners on overall image quality in the absence and presence of metal-related artefacts (p < 0.05).

Results

Image quality perception significantly differed amongst CBCT devices (p < 0.05). Some devices performed significantly better, independently of scanning protocol and clinical condition. In the presence of metal artefacts, medium FOV standard scanning protocols scored significantly better, while in the absence of metal, small FOV standard yielded the highest performance.

Conclusions

Subjective image quality differs significantly amongst CBCT devices and scanning protocols. Metal-related artefacts may highly impact image quality, with a significant device-dependent variability and only few scanners being more robust against metal artefacts. Often, metal artefact expression may be somewhat reduced by proper protocol selection.

Clinical relevance

Metallic objects may severely impact image quality in several CBCT devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gaêta-Araujo H, Alzoubi T, Vasconcelos KF, Orhan K, Pauwels R, Casselman JW, Jacobs R (2020) Cone beam computed tomography in dentomaxillofacial radiology: a two-decade overview. Dentomaxillofac Radiol 49:20200145. https://doi.org/10.1259/dmfr.20200145

    Article  PubMed  PubMed Central  Google Scholar 

  2. Liang X, Jacobs R, Hassan B, Lim L, Pauwels R, Corpas L, Souza PC, Martens W, Shahbazian M, Alonso A, Lambrichts I (2010) A comparative evaluation of cone beam computed tomography (CBCT) and multi-slice CT (MSCT) Part I. On subjective image quality. Eur J Radiol 75:265–269. https://doi.org/10.1016/j.ejrad.2009.03.042

    Article  PubMed  Google Scholar 

  3. Jacobs R (2011) Dental cone beam CT and its justified use in oral health care. JBR-BTR 94:254–265. https://doi.org/10.5334/jbr-btr.662

    Article  PubMed  Google Scholar 

  4. Pauwels R, Stamatakis H, Manousaridis G, Walker A, Michielsen K, Bosmans H, Bogaerts R, Jacobs R, Horner K, Tsiklakis K, The SEDENTEXCT Project Consortium (2011) Development and applicability of a quality control phantom for dental cone-beam CT. J Appl Clin Med Phys 12:3478. https://doi.org/10.1120/jacmp.v12i4.3478

    Article  PubMed  Google Scholar 

  5. McGuigan MB, Duncan HF, Horner K (2018) An analysis of effective dose optimization and its impact on image quality and diagnostic efficacy relating to dental cone beam computed tomography (CBCT). Swiss Dent J 128:297–316

    PubMed  Google Scholar 

  6. Oenning AC, Pauwels R, Stratis A, Vasconcelos KF, Tijskens E, Grauwe AD, Dimitra research group, Jacobs R, Salmon B (2019) Halve the dose while maintaining image quality in paediatric cone beam CT. Sci Rep 9:5521. https://doi.org/10.1038/s41598-019-41949-w

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pauwels R, Jacobs R, Bogaerts R, Bosmans H, Panmekiate S (2016) Reduction of scatter-induced image noise in cone beam computed tomography: effect of field of view size and position. Oral Surg Oral Med Oral Pathol Oral Radiol 121:188–195. https://doi.org/10.1016/j.oooo.2015.10.017

    Article  PubMed  Google Scholar 

  8. Vasconcelos KF, Nicolielo LF, Nascimento MC, Haiter-Neto F, Bóscolo FN, Van Dessel J, EzEldeen M, Lambrichts I, Jacobs R (2015) Artefact expression associated with several cone-beam computed tomographic machines when imaging root filled teeth. Int Endod J 48:994–1000. https://doi.org/10.1111/iej.12395

    Article  PubMed  Google Scholar 

  9. Wanderley VA, Vasconcelos KF, Leite AF, Oliveira ML, Jacobs R (2020) Dentomaxillofacial CBCT: clinical challenges for indication-oriented imaging. Semin Musculoskelet Radiol 24:479–487. https://doi.org/10.1055/s-0040-1709428

    Article  PubMed  Google Scholar 

  10. Pinto JC, Wanderley VA, de Faria VK, Leite AF, Pauwels R, Nadjmi M, Oliveira ML, Tanomaru-Filho M, Jacobs R (2021) Evaluation of 10 cone-beam computed tomographic devices for endodontic assessment of fine anatomic structures. J Endod 47:947–953. https://doi.org/10.1016/j.joen.2021.02.013

    Article  PubMed  Google Scholar 

  11. de Oliveira MVL, Wenzel A, Campos PS, Spin-Neto R (2017) Quality assurance phantoms for cone beam computed tomography: a systematic literature review. Dentomaxillofac Radiol 46:20160329. https://doi.org/10.1259/dmfr.20160329

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fontenele RC, Nascimento EH, Vasconcelos TV, Noujeim M, Freitas DQ (2018) Magnitude of cone beam CT image artefacts related to zirconium and titanium implants: impact on image quality. Dentomaxillofac Radiol 47:20180021. https://doi.org/10.1259/dmfr.20180021

    Article  PubMed  PubMed Central  Google Scholar 

  13. Brasil DM, Pauwels R, Coucke W, Haiter-Neto F, Jacobs R (2019) Image quality optimization of narrow detector dental computed tomography for paediatric patients. Dentomaxillofac Radiol 48:20190032. https://doi.org/10.1259/dmfr.20190032

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yeung AWK, Harper B, Zhang C, Neelakantan P, Bornstein MM (2020) Do different cone beam computed tomography exposure protocols influence subjective image quality prior to and after root canal treatment? Clin Oral Investig. https://doi.org/10.1007/s00784-020-03524-w

    Article  PubMed  PubMed Central  Google Scholar 

  15. World Medical Association (2001) World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. Bull World Health Organ 79:373–374

    PubMed Central  Google Scholar 

  16. Jones DEA, Raine HC (1949) Correspondence. Br J Radiol 22:549–550

    Article  Google Scholar 

  17. Oenning AC, Salmon B, Vasconcelos KF et al (2018) DIMITRA paediatric skull phantoms: development of age-specific paediatric models for dentomaxillofacial radiology research. Dentomaxillofac Radiol 47:20170285. https://doi.org/10.1259/2Fdmfr.20170285

    Article  PubMed  PubMed Central  Google Scholar 

  18. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16:187–198. https://doi.org/10.1109/42.563664

    Article  PubMed  Google Scholar 

  19. Pauwels R, Stamatakis H, Bosmans H, Bogaerts R, Jacobs R, Horner K, Tsiklakis K, The SEDENTEXCT Project Consortium (2013) Quantification of metal artefacts on cone beam computed tomography images. Clin Oral Implants Res 24:94–99. https://doi.org/10.1111/j.1600-0501.2011.02382.x

    Article  PubMed  Google Scholar 

  20. Pauwels R, Jacobs R, Singer SR, Mupparapu M (2015) CBCT-based bone quality assessment: are Hounsfield units applicable? Dentomaxillofac Radiol 44:20140238. https://doi.org/10.1259/dmfr.20140238

    Article  PubMed  Google Scholar 

  21. Oliveira ML, Tosoni GM, Lindsey DH, Mendoza K, Tetradis S, Mallya SM (2013) Influence of anatomical location on CT numbers in cone beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol 115:558–564. https://doi.org/10.1016/j.oooo.2013.01.021

    Article  PubMed  Google Scholar 

  22. Schulze RK, Berndt D, d’Hoedt B (2010) On cone-beam computed tomography artifacts induced by titanium implants. Clin Oral Implants Res 21:100–107. https://doi.org/10.1111/j.1600-0501.2009.01817.x

    Article  PubMed  Google Scholar 

  23. Loubele M, Bogaerts R, Van Dijck E, Pauwels R, Vanheusden S, Suetens P, Marchal G, Sanderink G, Jacobs R (2000) Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications. Eur J Radiol 71:461–468. https://doi.org/10.1016/j.ejrad.2008.06.002

    Article  Google Scholar 

  24. Brasil DM, Pauwels R, Coucke W, Haiter-Neto F, Jacobs R (2019) Image quality optimization using a narrow vertical detector dental cone-beam CT. Dentomaxillofac Radiol 48:20180357. https://doi.org/10.1259/dmfr.20180357

    Article  PubMed  PubMed Central  Google Scholar 

  25. Elshenawy H, Aly W, Salah N, Nasry S, Anter E, Ekram K (2019) Influence of small, midi, medium and large fields of view on accuracy of linear measurements in CBCT imaging: diagnostic accuracy study. Open Access Maced J Med Sci 7:1037–1041. https://doi.org/10.3889/oamjms.2019.232

    Article  PubMed  PubMed Central  Google Scholar 

  26. Costa FF, Gaia BF, Umetsubo OS, Pinheiro LR, Tortamano IP, Cavalcanti MG (2012) Use of large-volume cone-beam computed tomography in identification and localization of horizontal root fracture in the presence and absence of intracanal metallic post. J Endod 38:856–859. https://doi.org/10.1016/j.joen.2012.03.011

    Article  PubMed  Google Scholar 

  27. Hassan B, Metska ME, Ozok AR, van der Stelt P, Wesselink PR (2010) Comparison of five cone beam computed tomography systems for the detection of vertical root fractures. J Endod 36:126–129. https://doi.org/10.1016/j.joen.2009.09.013

    Article  PubMed  Google Scholar 

  28. American Association of Endodontists; American Academy of Oral and Maxillofacial Radiology (2011) Use of cone-beam computed tomography in endodontics joint position statement of the American Association of Endodontists and the American Academy of Oral and Maxillofacial Radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol 111:234–237. https://doi.org/10.1016/j.tripleo.2010.11.012

    Article  Google Scholar 

  29. Candemil AP, Salmon B, Freitas DQ, Ambrosano GM, Haiter-Neto F, Oliveira ML (2018) Metallic materials in the exomass impair cone beam CT voxel values. Dentomaxillofac Radiol 47:20180011. https://doi.org/10.1259/dmfr.20180011

    Article  PubMed  PubMed Central  Google Scholar 

  30. Candemil AP, Salmon B, Freitas DQ, Haiter-Neto F, Oliveira ML (2020) Distribution of metal artefacts arising from the exomass in small field-of-view cone beam computed tomography scans. Oral Surg Oral Med Oral Pathol Oral Radiol 130:116–125. https://doi.org/10.1016/j.oooo.2020.01.002

    Article  PubMed  Google Scholar 

  31. Wanderley VA, de Faria VK, Leite AF, Pauwels R, Shujaat S, Jacobs R, Oliveira ML (2021) Impact of the blooming artefact on dental implant dimensions in 13 cone-beam computed tomography devices. Int J Implant Dent 7:67. https://doi.org/10.1186/s40729-021-00347-6

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pauwels R, Nackaerts O, Bellaiche N, Stamatakis H, Tsiklakis K, Walker A, Bosmans H, Bogaerts R, Jacobs R, Horner K, The SEDENTEXCT Consortium (2013) Variability of dental cone beam CT grey values for density estimations. Br J Radiol 86:20120135. https://doi.org/10.1259/bjr.20120135

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shokri A, Jamalpour MR, Khavid A, Mohseni Z, Sadeghi M (2019) Effect of exposure parameters of cone beam computed tomography on metal artifact reduction around the dental implants in various bone densities. BMC Med Imaging 29(19):34. https://doi.org/10.1186/s12880-019-0334-4

    Article  Google Scholar 

  34. Bechara B, Alex McMahan C, Moore WS, Noujeim M, Teixeira FB, Geha H (2013) Cone beam CT scans with and without artefact reduction in root fracture detection of endodontically treated teeth. Dentomaxillofac Radiol 42:20120245. https://doi.org/10.1259/dmfr.20120245

    Article  PubMed  PubMed Central  Google Scholar 

  35. Queiroz PM, Groppo FC, Oliveira ML, Haiter-Neto F, Freitas DQ (2017) Evaluation of the efficacy of a metal artifact reduction algorithm in different cone beam computed tomography scanning parameters. Oral Surg Oral Med Oral Pathol Oral Radiol 123:729–734. https://doi.org/10.1016/j.oooo.2017.02.015

    Article  PubMed  Google Scholar 

  36. de Azevedo-Vaz SL, Peyneau PD, Ramirez-Sotelo LR, Vasconcelos KF, Campos PS, Haiter-Neto F (2016) Efficacy of a cone beam computed tomography metal artifact reduction algorithm for the detection of peri-implant fenestrations and dehiscences. Oral Surg Oral Med Oral Pathol Oral Radiol 121:550–556. https://doi.org/10.1016/j.oooo.2016.01.013

    Article  Google Scholar 

  37. Jacobs R, Salmon B, Codari M, Hassan B, Bornstein MM (2018) Cone beam computed tomography in implant dentistry: recommendations for clinical use. BMC Oral Health 15(18):88. https://doi.org/10.1186/s12903-018-0523-5

    Article  Google Scholar 

  38. Burgess AE (1995) Comparison of receiver operating characteristic and forced choice observer performance measurement methods. Med Phys 22:643–655. https://doi.org/10.1118/1.597576

    Article  PubMed  Google Scholar 

  39. Hidalgo Rivas JA, Horner K, Thiruvenkatachari B, Davies J, Theodorakou C (2015) Development of a low-dose protocol for cone beam CT examinations of the anterior maxilla in children. Br J Radiol 88:20150559. https://doi.org/10.1259/bjr.20150559

    Article  PubMed  PubMed Central  Google Scholar 

  40. de Moura PM, Hallac RR, Seaward JR, Kane AA, Aguiar M, Raggio R, Gutfilen B (2016) Objective and subjective image evaluation of maxillary alveolar bone based on cone beam computed tomography exposure parameters. Oral Surg Oral Med Oral Pathol Oral Radiol 121:557–565. https://doi.org/10.1016/j.oooo.2016.01.019

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Jozef Ludovic Beckers for the provision of a gold alloy metallic post; Prof. Kaan Orhan, Dr. Dandan Song, Wouter Mollemans and Wouter Reybrouck for enabling part of the data collection investigated in this research and Wim Coucke for his assistance with the statistical analysis.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001. Ruben Pauwels is supported by the European Union Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Grant agreement number 754513 and by Aarhus University Research Foundation (AIAS-COFUND).

Author information

Authors and Affiliations

Authors

Contributions

Victor Aquino Wanderley: investigation, data curation, writing—original draft preparation, funding acquisition; André Ferreira Leite: investigation, formal analysis and writing—original draft preparation; Karla de Faria Vasconcelos: methodology, data curation and writing—original draft preparation; Ruben Pauwels: formal analysis, writing—reviewing and editing; Francisca Müller Garcia: methodology, writing—reviewing and editing; Kathrin Becker: resources and writing—reviewing; Matheus L Oliveira: supervision, writing—reviewing and editing; Reinhilde Jacobs: conceptualisation, supervision, writing—reviewing and editing.

Corresponding author

Correspondence to Victor Aquino Wanderley.

Ethics declarations

Ethics approval

This experimental study was designed and approved according to the regulations of the Belgian national council for bioethics research committee (protocol number NH019 2019–09-03) and the Helsinki Declaration.

Informed consent

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wanderley, V., Leite, A., de Faria Vasconcelos, K. et al. Impact of metal artefacts on subjective perception of image quality of 13 CBCT devices. Clin Oral Invest 26, 4457–4466 (2022). https://doi.org/10.1007/s00784-022-04409-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-022-04409-w

Keywords

Navigation