Skip to main content

Advertisement

Log in

Micro-CT assessment of radicular pulp calcifications in extracted maxillary first molar teeth

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The present study aimed to evaluate the frequency, position, and length of radicular pulp calcifications in three-rooted maxillary first molars using micro-computed tomography.

Materials and methods

Two hundred three-rooted maxillary first molars were scanned at a pixel size of 10 µm and reconstructed using similar parameters. Three-dimensional models of the mesiobuccal (MB1, MB2, MB3), distobuccal (DB), and palatal (P) canals were qualitatively evaluated for discontinuity in the canal path. Transaxial and sagittal cross-sectional images of the roots were further screened, and the complete obliteration of the canal lumen by pulp calcification was identified when the canal had similar radiodensity to the surrounding dentine. Then, the number, position, and length of the calcifications were recorded for each root. Intra-observer agreement was performed using Cohen’s kappa test, while one-way ANOVA and Duncan tests compared the lengths of calcifications among the canals, with α = 5%.

Results

Intra-observer agreement was perfect for identification of pulp calcifications (ĸ = 1.0; p = 0.000). MB2 and MB3 canals accounted for the highest percentage frequency of calcifications distributed throughout the canal path. In the MB1, DB, and P canals, they occurred mainly at the apical third. Lengths of calcifications were greater in the MB3 (0.89 ± 0.81 mm) and MB2 (0.82 ± 0.93 mm) canals than in the MB1 (0.39 ± 0.32 mm), DB (0.34 ± 0.22 mm), and P (0.28 ± 0.22 mm) canals (p < 0.05).

Conclusion

MB2 and MB3 canals accounted for the highest frequency and length of radicular pulp calcifications. In the MB1, DB, and P canals, calcifications occurred mostly at the apical third, while in the MB2 and MB3, most of calcifications were observed at the orifice level and along the canal path.

Clinical relevance

In maxillary first molars, radicular pulp calcifications are mainly located at the apical third of the MB1, DB, and P canals, while in the MB2 and MB3 canals, most of them are at the orifice level or along the canal path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Carvalho TS, Lussi A (2017) Age-related morphological, histological and functional changes in teeth. J Oral Rehabil 44:291–298. https://doi.org/10.1111/joor.12474

    Article  PubMed  Google Scholar 

  2. McCabe P, Dummer PMH (2012) Pulp canal obliteration: an endodontic diagnosis and treatment challenge. Int Endod J 45:177–197. https://doi.org/10.1111/j.1365-591.2011.01963.x

    Article  PubMed  Google Scholar 

  3. Bastos JV, Côrtes MIS (2018) Pulp canal obliteration after traumatic injuries in permanent teeth - scientific fact or fiction? Braz Oral Res 32:e75. https://doi.org/10.1590/1807-3107bor-2018.vol32.0075

    Article  PubMed  Google Scholar 

  4. Chen B, Szabo D, Shen Y, Zhang D, Li X, Ma J, Haapasalo M (2020) Removal of calcifications from distal canals of mandibular molars by a non-instrumentational cleaning system: a micro-CT study. Aust Endod J 46:11–16. https://doi.org/10.1111/aej.12376

    Article  PubMed  Google Scholar 

  5. Tamse A, Kaffe I, Littner M, Shani R (1982) Statistical evaluation of radiologic survey of pulp stones. J Endod 8:455–458. https://doi.org/10.1016/S0099-2399(82)80150-7

    Article  PubMed  Google Scholar 

  6. Moss-Salentijn L, Klyvert MH (1983) Epithelially induced denticles in the pulps of recently erupted, noncarious human premolars. J Endod 9:554–560. https://doi.org/10.1016/S0099-2399(83)80060-0

    Article  PubMed  Google Scholar 

  7. Baghdady VS, Ghose LJ, Nahoom HY (1988) Prevalence of pulp stones in a teenage Iraqi group. J Endod 14:309–311. https://doi.org/10.1016/S0099-2399(88)80032-3

    Article  PubMed  Google Scholar 

  8. Şener S, Cobankara FK, Akgünlü F (2009) Calcifications of the pulp chamber: prevalence and implicated factors. Clin Oral Invest 13:209–215. https://doi.org/10.1007/s00784-008-0212-x

    Article  Google Scholar 

  9. Goga R, Chandler NP, Oginni AO (2008) Pulp stones: a review. Int Endod J 41:457–468. https://doi.org/10.1111/j.1365-2591.2008.01374.x

    Article  PubMed  Google Scholar 

  10. Luukko K, Kettunen P, Fristad I, Berggreen E (2011) Structure and functions of the dentin-pulp complex. In: Hargreaves KM, Cohen S (eds) Cohen’s Pathways of the Pulp, 10th edn. Mosby, St. Louis, pp 283–348

    Google Scholar 

  11. da Silva EJNL, Prado MC, Queiroz PM, Nejaim Y, Brasil DM, Groppo FC, Haiter-Neto F (2017) Assessing pulp stones by cone-beam computed tomography. Clin Oral Investig 21:2327–2333. https://doi.org/10.1007/s00784-016-2027-5

    Article  PubMed  Google Scholar 

  12. Taşsöker M, Magat G, Şener S (2018) A comparative study of cone-beam computed tomography and digital panoramic radiography for detecting pulp stones. Imaging Sci Dent 48:201–212. https://doi.org/10.5624/isd.2018.48.3.201

    Article  PubMed  PubMed Central  Google Scholar 

  13. Milcent CPF, da Silva TG, Baika LM, Grassi MT, Carneiro E, Franco A, de Lima AAS (2019) Morphologic, structural, and chemical properties of pulp stones in extracted human teeth. J Endod 45:1504–1512. https://doi.org/10.1016/j.joen.2019.09.009

    Article  PubMed  Google Scholar 

  14. Langeland K, Rodrigues H, Dowden W (1974) Periodontal disease, bacteria, and pulpal histopathology. Oral Surg Oral Med Oral Pathol 37:257–270. https://doi.org/10.1034/j.1600-051x.2002.290801.x

    Article  PubMed  Google Scholar 

  15. Li L, Zhu YQ, Jiang L, Peng W, Ritchie HH (2011) Hypoxia promotes mineralization of human dental pulp cells. J Endod 37:799–802. https://doi.org/10.1016/j.joen.2011.02.028

    Article  PubMed  Google Scholar 

  16. Fleig S, Attin T, Jungbluth H (2017) Narrowing of the radicular pulp space in coronally restored teeth. Clin Oral Invest 21:1251–1257. https://doi.org/10.1007/s00784-016-1899-8

    Article  Google Scholar 

  17. Bernick S, Nedelman C (1975) Effect of aging on the human pulp. J Endod 1:88–94. https://doi.org/10.1016/S0099-2399(75)80024-0

    Article  PubMed  Google Scholar 

  18. Kannan S, Kannepady SK, Muthu K, Jeevan MB, Thapasum A (2015) Radiographic assessment of the prevalence of pulp stones in Malaysians. J Endod 41:333–337. https://doi.org/10.1016/j.joen.2014.10.015

    Article  PubMed  Google Scholar 

  19. Çolak H, Çelebi AA, Hamidi MM, Bayraktar Y, Çolak T, Uzgur R (2012) Assessment of the prevalence of pulp stones in a sample of Turkish central anatolian population. Sci World J 804278:1–7. https://doi.org/10.1100/2012/804278

    Article  Google Scholar 

  20. De-Deus G, Belladonna FG, Cavalcante DM, Simoes-Carvalho M, Silva E, Carvalhal JCA, Zamolyi RQ, Lopes RT, Versiani MA, Dummer PMH, Zehnder M (2021) Contrast-enhanced micro-CT to assess dental pulp tissue debridement in root canals of extracted teeth: a series of cascading experiments towards method validation. Int Endod J 54:279–293. https://doi.org/10.1111/iej.13408

    Article  PubMed  Google Scholar 

  21. Yang YM, Guo B, Guo LY, Yang Y, Hong X, Pan HY, Zou WL, Hu T (2016) CBCT-aided microscopic and ultrasonic treatment for upper or middle thirds calcified root canals. Biomed Res Int 2016:1–9. https://doi.org/10.1155/2016/4793146

    Article  Google Scholar 

  22. Ball RL, Barbizam JV, Cohenca N (2013) Intraoperative endodontic applications of cone-beam computed tomography. J Endod 39:548–557. https://doi.org/10.1016/j.joen.2012.11.038

    Article  PubMed  Google Scholar 

  23. Hsieh CY, Wu YC, Su CC, Chung MP, Huang RY, Ting PY, Lai CK, Chang KS, Tsai YC, Shieh YS (2018) The prevalence and distribution of radiopaque, calcified pulp stones: A cone-beam computed tomography study in a northern Taiwanese population. J Dent Sci 13:138–144. https://doi.org/10.1016/j.jds.2017.06.005

    Article  PubMed  Google Scholar 

  24. Zhang D, Chen J, Lan G, Li M, An J, Wen X, Liu L, Deng M (2017) The root canal morphology in mandibular first premolars: a comparative evaluation of cone-beam computed tomography and micro-computed tomography. Clin Oral Investig 21:1007–1012. https://doi.org/10.1007/s00784-016-1852-x

    Article  PubMed  Google Scholar 

  25. Borges CC, Estrela C, Decurcio DA, Pécora JD, Sousa-Neto MD, Rossi-Fedele G (2020) Cone-beam and micro-computed tomography for the assessment of root canal morphology: a systematic review. Braz Oral Res 34:e056. https://doi.org/10.1590/1807-3107bor-2020.vol34.0056

    Article  PubMed  Google Scholar 

  26. Ordinola-Zapata R, Bramante CM, Versiani MA, Moldauer BI, Topham G, Gutmann JL, Nuñez A, Duarte MA, Abella F (2017) Comparative accuracy of the clearing technique, CBCT and Micro-CT methods in studying the mesial root canal configuration of mandibular first molars. Int Endod J 50:90–96. https://doi.org/10.1111/iej.12593

    Article  PubMed  Google Scholar 

  27. Markvart M, Bjørndal L, Darvann TA, Larsen P, Dalstra M, Kreiborg S (2012) Three-dimensional analysis of the pulp cavity on surface models of molar teeth, using X-ray micro-computed tomography. Acta Odontol Scand 70:133–139. https://doi.org/10.3109/00016357.2011.600707

    Article  PubMed  Google Scholar 

  28. Park JW, Lee JK, Ha BH, Choi JH, Perinpanayagam H (2009) Three-dimensional analysis of maxillary first molar mesiobuccal root canal configuration and curvature using micro–computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:437–442

    Article  Google Scholar 

  29. Berès F, Isaac J, Mouton L, Rouzière S, Berdal A, Simon S, Dessombz A (2016) Comparative physicochemical analysis of pulp stone and dentin. J Endod 42:432–438. https://doi.org/10.1016/j.joen.2015.11.007

    Article  PubMed  Google Scholar 

  30. Jannati R, Afshari M, Moosazadeh M, Allahgholipour SZ, Eidy M, Hajihoseini M (2019) Prevalence of pulp stones: a systematic review and meta-analysis. J Evid Based Med 12:133–139. https://doi.org/10.1111/jebm.12331

    Article  PubMed  Google Scholar 

  31. Shahbazian M, Vandewoude C, Wyatt J, Jacobs R (2014) Comparative assessment of panoramic radiography and CBCT imaging for radiodiagnostics in the posterior maxilla. Clin Oral Invest 18:293–300. https://doi.org/10.1007/s00784-013-0963-x

    Article  Google Scholar 

  32. Burke FM, Samarawickrama DY (1995) Progressive changes in the pulpo-dentinal complex and their clinical consequences. Gerodontology 12:57–66. https://doi.org/10.1111/j.1741-2358.1995.tb00132.x

    Article  PubMed  Google Scholar 

  33. Gautam S, Galgali SR, Sheethal HS, Priya NS (2017) Pulpal changes associated with advanced periodontal disease: a histopathological study. J Oral Maxillofac Pathol 21:58–63. https://doi.org/10.4103/0973-029X.203795

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fatemi K, Disfani R, Zare R, Moeintaghavi A, Ali SA, Boostani HR (2012) Influence of moderate to severe chronic periodontitis on dental pulp. J Indian Soc of Periodontol 16:558–561. https://doi.org/10.4103/0972-124X.106911

    Article  Google Scholar 

  35. Czarnecki RT, Schilder H (1979) A histological evaluation of the human pulp in teeth with varying degrees of periodontal disease. J Endod 5:242–253. https://doi.org/10.1016/S0099-2399(79)80018-7

    Article  PubMed  Google Scholar 

  36. Torabinejad M, Kiger RD (1985) A histologic evaluation of dental pulp tissue of a patient with periodontal disease. Oral Surg Oral Med Oral Pathol 59:198–200. https://doi.org/10.1016/0030-4220(85)90018-0

    Article  PubMed  Google Scholar 

  37. Tang L, Sun TQ, Gao XJ, Zhou XD, Huang DM (2011) Tooth anatomy risk factors influencing root canal working length accessibility. Int J Oral Sci 3:135–140. https://doi.org/10.4248/IJOS11050

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wu D, Shi W, Wu J, Wu Y, Liu W, Zhu Q (2011) The clinical treatment of complicated root canal therapy with the aid of a dental operating microscope. Int Dent J 61:261–266. https://doi.org/10.1111/j.1875-595X.2011.00070.x

    Article  PubMed  Google Scholar 

  39. Akerblom A, Hasselgren G (1988) The prognosis for endodontic treatment of obliterated root canals. J Endod 14:565–567. https://doi.org/10.1016/s0099-2399(88)80092-x

    Article  PubMed  Google Scholar 

  40. Kiefner P, Connert T, ElAyouti A, Weiger R (2017) Treatment of calcified root canals in elderly people: a clinical study about the accessibility, the time needed and the outcome with a three-year follow-up. Gerodontology 34:164–170. https://doi.org/10.1111/ger.12238

    Article  PubMed  Google Scholar 

  41. Ordinola-Zapata R, Martins JNR, Plascencia H, Versiani MA, Bramante CM (2020) The MB3 canal in maxillary molars: a micro-CT study. Clin Oral Invest 24:4109–4121. https://doi.org/10.1007/s00784-020-03284-7

    Article  Google Scholar 

  42. Yoshioka T, Kikuchi I, Fukumoto Y, Kobayashi C (2005) Suda H (2005) Detection of the second mesiobuccal canal in mesiobuccal roots of maxillary molar teeth ex vivo. Int Endod J 38:124–128. https://doi.org/10.1111/j.1365-2591.2004.00918.x

    Article  PubMed  Google Scholar 

  43. Costa FFNP, Pacheco-Yanes J, Siqueira JF Jr, Oliveira ACS, Gazzaneo I, Amorim CA, Santos PHB, Alves FR (2019) Association between missed canals and apical periodontitis. Int Endod J 52:400–406. https://doi.org/10.1111/iej.13022

    Article  PubMed  Google Scholar 

  44. do Carmo WD, Verner FS, Aguiar LM, Visconti MA, Ferreira MD, Lacerda MFLS, Junqueira RB (2021) Missed canals in endodontically treated maxillary molars of a Brazilian subpopulation: prevalence and association with periapical lesion using cone-beam computed tomography. Clin Oral Investig 25:2317–2323. https://doi.org/10.1007/s00784-020-03554-4

    Article  PubMed  Google Scholar 

  45. Karabucak B, Bunes A, Chehoud C, Kohli MR, Setzer F (2016) Prevalence of apical periodontitis in endodontically treated premolars and molars with untreated canal: a cone-beam computed tomography study. J Endod 42:538–541. https://doi.org/10.1016/j.joen.2015.12.026

    Article  PubMed  Google Scholar 

  46. Coutinho-Filho TS, Gurgel-Filho ED, Souza-Filho FJ, Silva EJNL (2012) Preliminary investigation to achieve patency of MB2 canal in maxillary molars. Braz J Oral Sci 11:373–376

    Google Scholar 

  47. Shi X, Zhao S, Wang W, Jiang Q, Yang X (2018) Novel navigation technique for the endodontic treatment of a molar with pulp canal calcification and apical pathology. Aust Endod J 44:66–70. https://doi.org/10.1111/aej.12207

    Article  PubMed  Google Scholar 

  48. Jain SD, Carrico CK, Bermanis I (2020) 3-Dimensional accuracy of dynamic navigation technology in locating calcified canals. J Endod 46:839–845. https://doi.org/10.1016/j.joen.2020.03.014

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Scientific and Technological Research Council of Turkey-TUBİTAK (grant no. 117S139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cangül Keskin.

Ethics declarations

Ethical approval

The study protocol was approved by the local university clinical research ethical board with the approval number KAEK 2015/408.

Informed consent

Informed consent was obtained from each patient.

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keleş, A., Keskin, C. & Versiani, M.A. Micro-CT assessment of radicular pulp calcifications in extracted maxillary first molar teeth. Clin Oral Invest 26, 1353–1360 (2022). https://doi.org/10.1007/s00784-021-04109-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-021-04109-x

Keywords

Navigation