Bone mineral density, bone microstructure, and bone turnover markers in females with temporomandibular joint osteoarthritis

Abstract

Objective

The pathogenesis of the temporomandibular joint osteoarthritis (TMJ OA) has not been clearly revealed. This study aimed to investigate the pathogenesis of TMJ OA based on bone metabolism.

Methods

Fifty-nine young (mean age 23.4 ± 3.4 years) and 41 post-menopausal females (mean age 57.2 ± 4.6 years) were enrolled. Areal bone mineral density (aBMD) was measured via dual-energy X-ray absorptiometry of the lumbar spine, femoral neck, total hip, and ultradistal radius. Levels of four bone resorption markers, serum ionized calcium and C-telopeptide of type I collagen (CTx) and urinary N-telopeptide of type I collagen and deoxypyridinoline, two bone formation markers, serum bone alkaline phosphatase and osteocalcin, and serum 25-dihydroxyvitamin D were analyzed at baseline and after 12 months. Condylar bone quality was assessed by 3D reconstructed CT images.

Results

Significant differences in condylar bone quality and aBMDs of the lumbar spine in accordance with TMJ OA stages were observed in young and post-menopausal females. The level of CTx was significantly associated with the development and progression of TMJ OA only in young females, whereas 25-dihydroxyvitamine D demonstrated significant associations in young and post-menopausal females. Progression of TMJ OA was accompanied by reduced condylar bone quality and concomitant with lower lumbar spine aBMDs in young and post-menopausal females.

Conclusion

Bone metabolism and condylar quality might be involved in the development and progression of TMJ OA.

Clinical relevance

CTx could be considered as a potential diagnostic and monitoring marker in young females, and vitamin D showed a therapeutic potential for TMJ OA.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Tanaka E, Detamore MS, Mercuri LG (2008) Degenerative disorders of the temporomandibular joint: etiology, diagnosis, and treatment. J Dent Res 87:296–307. https://doi.org/10.1177/154405910808700406

    Article  PubMed  Google Scholar 

  2. 2.

    Wang XD, Zhang JN, Gan YH, Zhou YH (2015) Current understanding of pathogenesis and treatment of TMJ osteoarthritis. J Dent Res 94:666–673. https://doi.org/10.1177/0022034515574770

    Article  PubMed  Google Scholar 

  3. 3.

    Herrero-Beaumont G, Roman-Blas JA, Castaneda S, Jimenez SA (2009) Primary osteoarthritis no longer primary: three subsets with distinct etiological, clinical, and therapeutic characteristics. Semin Arthritis Rheum 39:71–80. https://doi.org/10.1016/j.semarthrit.2009.03.006

    Article  PubMed  Google Scholar 

  4. 4.

    Kim K, Wojczynska A, Lee JY (2016) The incidence of osteoarthritic change on computed tomography of Korean temporomandibular disorder patients diagnosed by RDC/TMD; a retrospective study. Acta Odontol Scand 74:337–342. https://doi.org/10.3109/00016357.2015.1136678

    Article  PubMed  Google Scholar 

  5. 5.

    Manfredini D, Piccotti F, Ferronato G, Guarda-Nardini L (2010) Age peaks of different RDC/TMD diagnoses in a patient population. J Dent 38:392–399. https://doi.org/10.1016/j.jdent.2010.01.006

    Article  PubMed  Google Scholar 

  6. 6.

    Weaver CM, Gordon CM, Janz KF, Kalkwarf HJ, Lappe JM, Lewis R, O'Karma M, Wallace TC, Zemel BS (2016) The National Osteoporosis Foundation's position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int 27:1281–1386. https://doi.org/10.1007/s00198-015-3440-3

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Ahmad M, Hollender L, Anderson Q, Kartha K, Ohrbach R, Truelove EL, John MT, Schiffman EL (2009) Research diagnostic criteria for temporomandibular disorders (RDC/TMD): development of image analysis criteria and examiner reliability for image analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107:844–860. https://doi.org/10.1016/j.tripleo.2009.02.023

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Jiao K, Niu LN, Wang MQ, Dai J, Yu SB, Liu XD, Wang J (2011) Subchondral bone loss following orthodontically induced cartilage degradation in the mandibular condyles of rats. Bone 48:362–371. https://doi.org/10.1016/j.bone.2010.09.010

    Article  PubMed  Google Scholar 

  9. 9.

    Embree M, Ono M, Kilts T, Walker D, Langguth J, Mao J, Bi Y, Barth JL, Young M (2011) Role of subchondral bone during early-stage experimental TMJ osteoarthritis. J Dent Res 90:1331–1338. https://doi.org/10.1177/0022034511421930

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Shi J, Lee S, Pan HC, Mohammad A, Lin A, Guo W, Chen E, Ahn A, Li J, Ting K, Kwak JH (2017) Association of condylar bone quality with TMJ osteoarthritis. J Dent Res 96:888–894. https://doi.org/10.1177/0022034517707515

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Jagur O, Kull M, Leibur E, Kallikorm R, Loorits D, Lember M, Voog-Oras U (2011) Relationship between radiographic changes in the temporomandibular joint and bone mineral density: a population based study. Stomatologija 13:42–48

    PubMed  Google Scholar 

  12. 12.

    Ok SM, Lee SM, Park HR, Jeong SH, Ko CC, Kim YI (2018) Concentrations of CTX I, CTX II, DPD, and PYD in the urine as a biomarker for the diagnosis of temporomandibular joint osteoarthritis: a preliminary study. Cranio 36:366–372. https://doi.org/10.1080/08869634.2017.1361624

    Article  PubMed  Google Scholar 

  13. 13.

    Wang HY, Shin TT, Wang JS, Shiau YY, Chen YJ (2007) Low bone mineral density and temporomandibular joint derangement in young females. J Orofac Pain 21:143–149

    PubMed  Google Scholar 

  14. 14.

    Back K, Ahlqwist M, Hakeberg M, Bjorkelund C, Dahlstrom L (2017) Relation between osteoporosis and radiographic and clinical signs of osteoarthritis/arthrosis in the temporomandibular joint: a population-based, cross-sectional study in an older Swedish population. Gerodontology 34:187–194. https://doi.org/10.1111/ger.12245

    Article  PubMed  Google Scholar 

  15. 15.

    Schiffman E, Ohrbach R, Truelove E, Look J, Anderson G, Goulet JP, List T, Svensson P, Gonzalez Y, Lobbezoo F, Michelotti A, Brooks SL, Ceusters W, Drangsholt M, Ettlin D, Gaul C, Goldberg LJ, Haythornthwaite JA, Hollender L, Jensen R, John MT, De Laat A, de Leeuw R, Maixner W, van der Meulen M, Murray GM, Nixdorf DR, Palla S, Petersson A, Pionchon P, Smith B, Visscher CM, Zakrzewska J, Dworkin SF, International Rdc/Tmd Consortium Network IafDR and Orofacial Pain Special Interest Group IAftSoP (2014) Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) for Clinical and Research Applications: recommendations of the International RDC/TMD Consortium Network* and Orofacial Pain Special Interest Groupdagger. J Oral Facial Pain Headache 28:6–27. https://doi.org/10.11607/jop.1151

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Hong SW, Lee JK, Kang JH (2019) Skeletal maturation and predicted adult height in adolescents with temporomandibular joint osteoarthritis. J Oral Rehabil 46:541–548. https://doi.org/10.1111/joor.12780

    Article  PubMed  Google Scholar 

  17. 17.

    Kang JH, Yang IH, Hyun HK, Lee JY (2017) Dental and skeletal maturation in female adolescents with temporomandibular joint osteoarthritis. J Oral Rehabil 44:879–888. https://doi.org/10.1111/joor.12547

    Article  PubMed  Google Scholar 

  18. 18.

    Alexiou K, Stamatakis H, Tsiklakis K (2009) Evaluation of the severity of temporomandibular joint osteoarthritic changes related to age using cone beam computed tomography. Dentomaxillofac Radiol 38:141–147. https://doi.org/10.1259/dmfr/59263880

    Article  PubMed  Google Scholar 

  19. 19.

    Kang JH, An YS, Park SH, Song SI (2018) Influences of age and sex on the validity of bone scintigraphy for the diagnosis of temporomandibular joint osteoarthritis. Int J Oral Maxillofac Surg 47:1445–1452. https://doi.org/10.1016/j.ijom.2018.05.011

    Article  PubMed  Google Scholar 

  20. 20.

    Cevidanes LH, Walker D, Schilling J, Sugai J, Giannobile W, Paniagua B, Benavides E, Zhu H, Marron JS, Jung BT, Baranowski D, Rhodes J, Nackley A, Lim PF, Ludlow JB, Nguyen T, Goncalves JR, Wolford L, Kapila S, Styner M (2014) 3D osteoarthritic changes in TMJ condylar morphology correlates with specific systemic and local biomarkers of disease. Osteoarthr Cartil 22:1657–1667. https://doi.org/10.1016/j.joca.2014.06.014

    Article  PubMed Central  Google Scholar 

  21. 21.

    Camacho PM, Petak SM, Binkley N, Clarke BL, Harris ST, Hurley DL, Kleerekoper M, Lewiecki EM, Miller PD, Narula HS, Pessah-Pollack R, Tangpricha V, Wimalawansa SJ, Watts NB (2016) American Association of Clinical Endocrinologists and American College of Endocrinology Clinical Practice Guidelines for the Diagnosis and Treatment of Postmenopausal Osteoporosis—2016. Endocr Pract 22:1–42. https://doi.org/10.4158/EP161435.GL

    Article  PubMed  Google Scholar 

  22. 22.

    Hong SW, Kang JH (2020) Decreased mandibular cortical bone quality after botulinum toxin injections in masticatory muscles in female adults. Sci Rep 10:3623. https://doi.org/10.1038/s41598-020-60554-w

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Liu Y, Bauerle T, Pan L, Dimitrakopoulou-Strauss A, Strauss LG, Heiss C, Schnettler R, Semmler W, Cao L (2013) Calibration of cone beam CT using relative attenuation ratio for quantitative assessment of bone density: a small animal study. Int J Comput Assist Radiol Surg 8:733–739. https://doi.org/10.1007/s11548-012-0803-5

    Article  PubMed  Google Scholar 

  24. 24.

    de Oliveira RC, Leles CR, Normanha LM, Lindh C, Ribeiro-Rotta RF (2008) Assessments of trabecular bone density at implant sites on CT images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105:231–238. https://doi.org/10.1016/j.tripleo.2007.08.007

    Article  PubMed  Google Scholar 

  25. 25.

    Han YS, Jung YE, Song IS, Lee SJ, Seo BM (2016) Three-dimensional computed tomographic assessment of temporomandibular joint stability after orthognathic surgery. J Oral Maxillofac Surg 74:1454–1462. https://doi.org/10.1016/j.joms.2016.02.010

    Article  PubMed  Google Scholar 

  26. 26.

    Yin Q, Bi R, Abotaleb B, Jiang N, Li Y, Zhu S (2019) Changes in the position of the condyle after bilateral sagittal split ramus osteotomy in patients with mandibular retrusion and protrusion: a new condyle: fossa matching concept. Br J Oral Maxillofac Surg 57:1086–1091. https://doi.org/10.1016/j.bjoms.2019.09.022

    Article  PubMed  Google Scholar 

  27. 27.

    Cho DH, Chung JO, Chung MY, Cho JR, Chung DJ (2020) Reference intervals for bone turnover markers in Korean healthy women. J Bone Metab 27:43–52. https://doi.org/10.11005/jbm.2020.27.1.43

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Zhang J, Jiao K, Zhang M, Zhou T, Liu XD, Yu SB, Lu L, Jing L, Yang T, Zhang Y, Chen D, Wang MQ (2013) Occlusal effects on longitudinal bone alterations of the temporomandibular joint. J Dent Res 92:253–259. https://doi.org/10.1177/0022034512473482

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Yang HJ, Hwang SJ (2020) Effects of 17beta-estradiol deficiency and mechanical overload on osseous changes in the rat temporomandibular joint. J Oral Maxillofac Surg 78:214 e1–214 e14. https://doi.org/10.1016/j.joms.2019.10.002

    Article  Google Scholar 

  30. 30.

    Colombini A, Cauci S, Lombardi G, Lanteri P, Croiset S, Brayda-Bruno M, Banfi G (2013) Relationship between vitamin D receptor gene (VDR) polymorphisms, vitamin D status, osteoarthritis and intervertebral disc degeneration. J Steroid Biochem Mol Biol 138:24–40. https://doi.org/10.1016/j.jsbmb.2013.03.001

    Article  PubMed  Google Scholar 

  31. 31.

    Yilmaz AD, Yazicioglu D, Tuzuner Oncul AM, Yilmaz E, Eres G (2018) Vitamin D receptor gene polymorphisms (Apa1 and Taq1) in temporomandibular joint internal derangement/osteoarthritis in a group of Turkish patients. Mol Biol Rep 45:1839–1848. https://doi.org/10.1007/s11033-018-4330-5

    Article  PubMed  Google Scholar 

  32. 32.

    Shen M, Luo Y, Niu Y, Chen L, Yuan X, Goltzman D, Chen N, Miao D (2013) 1,25(OH)2D deficiency induces temporomandibular joint osteoarthritis via secretion of senescence-associated inflammatory cytokines. Bone 55:400–409. https://doi.org/10.1016/j.bone.2013.04.015

    Article  PubMed  Google Scholar 

  33. 33.

    Paredes R, Arriagada G, Cruzat F, Villagra A, Olate J, Zaidi K, van Wijnen A, Lian JB, Stein GS, Stein JL, Montecino M (2004) Bone-specific transcription factor Runx2 interacts with the 1alpha,25-dihydroxyvitamin D3 receptor to up-regulate rat osteocalcin gene expression in osteoblastic cells. Mol Cell Biol 24:8847–8861. https://doi.org/10.1128/MCB.24.20.8847-8861.2004

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the two National Research Foundation of Korea (NRF) grant funded by the Korea government (No. 2018R1C1B6007671 and No. 2020R1I1A1A01071537).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeong-Hyun Kang.

Ethics declarations

Ethics approval and consent to participate

The research protocol was approved by the Institutional Review Board of the University Hospital (AJIRB-MED-SMP-18-025). Informed consent was obtained from all participants.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hong, S.W., Kang, JH. Bone mineral density, bone microstructure, and bone turnover markers in females with temporomandibular joint osteoarthritis. Clin Oral Invest (2021). https://doi.org/10.1007/s00784-021-03946-0

Download citation

Keywords

  • Bone mineral density
  • Temporomandibular joint
  • Osteoarthritis
  • Bone metabolism
  • Bone turnover marker