Skip to main content

Advertisement

Log in

Low-speed drilling without irrigation versus conventional drilling for dental implant osteotomy preparation: a systematic review

  • Review
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Purpose

This paper aims to review the evidence comparing low-speed drilling without irrigation versus conventional drilling for dental implant osteotomy preparation.

Materials and methods

A systematic review was carried out based on the PRISMA statement. Four databases and gray literature were searched up to November 2020. In vitro, animal, and clinical studies were included. The variables were temperature change, drilling time, quantity of harvested bone, osteotomy precision, marginal bone loss, implant success rate, osseointegration, and the histomorphologic characteristics and cellularity of the osteotomy and of the harvested bone. Different tools for the assessment of bias were applied for each study design.

Results

A total of 626 articles were identified, of which 13 were included. Both low-speed drilling without irrigation (test group) and conventional drilling (control group) maintained temperatures below the critical temperature of 47 °C. The test group yielded a greater quantity and more beneficial cellular and histomorphologic properties of harvested bone, with a longer drilling time and greater osteotomy precision (p < 0.05). No significant results were obtained regarding drill wear, osseointegration, marginal bone loss, implant success rate, and histomorphology of the dental implant osteotomy (p > 0.05). The results, in particular on the osteotomy precision and quantity of harvested bone chips, should be interpreted with caution because outcomes are based in only one in vitro study.

Conclusions

Low-speed drilling without irrigation seems to be comparable to conventional drilling in preparing dental implant osteotomies. In some situations, low-speed drilling without irrigation might offer advantages over conventional drilling. The results should be interpreted with caution due to the low percentage of clinical human studies. Accordingly, more clinical studies are needed to improve the scientific evidence on this topic.

Clinical relevance

The low-speed drilling without irrigation is a valid technique for dental implant osteotomy preparation. Its higher quantity and quality of harvested autologous bone might be particularly beneficial in cases of dental implant placement with minor simultaneous bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Moraschini V, Poubel LA, Ferreira VF, Barboza Edos S (2015) Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: a systematic review. Int J Oral Maxillofac Surg 44(3):377–388. https://doi.org/10.1016/j.ijom.2014.10.023

    Article  PubMed  Google Scholar 

  2. Albrektsson T, Brånemark PI, Hansson HA, Lindström J (1981) Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 52(2):155–170. https://doi.org/10.3109/17453678108991776

    Article  PubMed  Google Scholar 

  3. Bernabeu-Mira JC, Pellicer-Chover H, Peñarrocha-Diago M, Peñarrocha-Oltra D (2020) In vitro study on bone heating during drilling of the implant site: material, design and wear of the surgical drill. Materials (Basel) 13(8):1921. https://doi.org/10.3390/ma13081921

    Article  Google Scholar 

  4. Eriksson AR, Albrektsson T (1983) Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent 50(1):101–107. https://doi.org/10.1016/0022-3913(83)90174-9

    Article  PubMed  Google Scholar 

  5. Möhlhenrich SC, Modabber A, Steiner T, Mitchell DA, Hölzle F (2015) Heat generation and drill wear during dental implant site preparation: systematic review. Br J Oral Maxillofac Surg 53(8):679–689. https://doi.org/10.1016/j.bjoms.2015.05.004

    Article  PubMed  Google Scholar 

  6. Mishra SK, Chowdhary R (2014) Heat generated by dental implant drills during osteotomy-a review: heat generated by dental implant drills. J Indian Prosthodont Soc 14(2):131–143. https://doi.org/10.1007/s13191-014-0350-6

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tehemar SH (1999) Factors affecting heat generation during implant site preparation: a review of biologic observations and future considerations. Int J Oral Maxillofac Implants 14(1):127–136

    PubMed  Google Scholar 

  8. Lindström J, Brånemark PI, Albrektsson T (1981) Mandibular reconstruction using the preformed autologous bone graft. Scand J Plast Reconstr Surg 15(1):29–38. https://doi.org/10.3109/02844318109103408

    Article  PubMed  Google Scholar 

  9. Gehrke SA, Bettach R, Taschieri S, Boukhris G, Corbella S, Del Fabbro M (2015) Temperature changes in cortical bone after implant site preparation using a single bur versus multiple drilling steps: an in vitro investigation. Clin Implant Dent Relat Res 17(4):700–707. https://doi.org/10.1111/cid.12172

    Article  PubMed  Google Scholar 

  10. Koo KT, Kim MH, Kim HY, Wikesjö UM, Yang JH, Yeo IS (2015) Effects of implant drill wear, irrigation, and drill materials on heat generation in osteotomy sites. J Oral Implantol 41(2):e19–e23. https://doi.org/10.1563/AAIK-JOI-D-13-00151

    Article  PubMed  Google Scholar 

  11. Strbac GD, Giannis K, Unger E, Mittlböck M, Watzek G, Zechner W (2014) A novel standardized bone model for thermal evaluation of bone osteotomies with various irrigation methods. Clin Oral Implants Res 25(5):622–631. https://doi.org/10.1111/clr.12090

    Article  PubMed  Google Scholar 

  12. Flanagan D (2010) Osteotomy irrigation: is it necessary? Implant Dent 19(3):241–249. https://doi.org/10.1097/ID.0b013e3181dc9852

    Article  PubMed  Google Scholar 

  13. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097. https://doi.org/10.1136/bmj.b2535

    Article  PubMed  PubMed Central  Google Scholar 

  14. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174. https://doi.org/10.2307/2529310

    Article  PubMed  Google Scholar 

  15. Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW (2014) SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 14:43-2288-14-43. https://doi.org/10.1186/1471-2288-14-43

    Article  Google Scholar 

  16. Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD et al (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928. https://doi.org/10.1136/bmj.d5928

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hinneburg I (2017) ROBINS-1: a tool for assessing risk of bias in non-randomised studies of interventions. Med Monatsschr Pharm 40(4):175–177. https://doi.org/10.1136/bmj.i4919

    Article  PubMed  Google Scholar 

  18. Ramamoorthi M, Bakkar M, Jordan J, Tran SD (2015) Osteogenic potential of dental mesenchymal stem cells in preclinical studies: a systematic review using modified ARRIVE and CONSORT guidelines. Stem Cells Int 2015:378368. https://doi.org/10.1155/2015/378368

    Article  PubMed  PubMed Central  Google Scholar 

  19. Astudillo-Rubio D, Delgado-Gaete A, Bellot-Arcis C, Montiel-Company JM, Pascual-Moscardo A, Almerich-Silla JM (2018) Mechanical properties of provisional dental materials: a systematic review and meta-analysis (vol 13, e0193162, 2018). PLoS One 13(4):e0196264. https://doi.org/10.1371/journal.pone.0193162

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kim SJ, Yoo J, Kim YS, Shin SW (2010) Temperature change in pig rib bone during implant site preparation by low-speed drilling. J Appl Oral Sci 18(5):522–527. https://doi.org/10.1590/s1678-77572010000500016

    Article  PubMed  PubMed Central  Google Scholar 

  21. Delgado-Ruiz RA, Velasco Ortega E, Romanos GE, Gerhke S, Newen I, Calvo-Guirado JL (2018) Slow drilling speeds for single-drill implant bed preparation. Experimental in vitro study. Clin Oral Investig 22(1):349–359. https://doi.org/10.1007/s00784-017-2119-x

    Article  PubMed  Google Scholar 

  22. Chen CH, Coyac BR, Arioka M, Leahy B, Tulu US, Aghvami M et al (2019) A novel osteotomy preparation technique to preserve implant site viability and enhance osteogenesis. J Clin Med 8(2):170. https://doi.org/10.3390/jcm8020170

    Article  PubMed Central  Google Scholar 

  23. Salomó-Coll O, Auriol-Muerza B, Lozano-Carrascal N, Hernández-Alfaro F, Wang HL, Gargallo-Albiol J (2020) Influence of bone density, drill diameter, drilling speed, and irrigation on temperature changes during implant osteotomies: an in vitro study. Clin Oral Investig. https://doi.org/10.1007/s00784-020-03398-y

  24. Giro G, Marin C, Granato R, Bonfante EA, Suzuki M, Janal MN et al (2011) Effect of drilling technique on the early integration of plateau root form endosteal implants: an experimental study in dogs. J Oral Maxillofac Surg 69(8):2158–2163. https://doi.org/10.1016/j-joms.2011.01.029

    Article  PubMed  Google Scholar 

  25. Anitua E, Carda C, Andia I (2007) A novel drilling procedure and subsequent bone autograft preparation: a technical note. Int J Oral Maxillofac Implants 22(1):138–145

    PubMed  Google Scholar 

  26. Calvo-Guirado JL, Delgado-Peña J, Maté-Sánchez JE, Mareque Bueno J, Delgado-Ruiz RA, Romanos GE (2015) Novel hybrid drilling protocol: evaluation for the implant healing--thermal changes, crestal bone loss, and bone-to-implant contact. Clin Oral Implants Res 26(7):753–760. https://doi.org/10.1111/clr.12341

    Article  PubMed  Google Scholar 

  27. Oh JH, Fang Y, Jeong SM, Choi BH (2016) The effect of low-speed drilling without irrigation on heat generation: an experimental study. J Korean Assoc Oral Maxillofac Surg 42(1):9–12. https://doi.org/10.5125/jkaoms.2016.42.1.9

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fraguas de San José L, Ruggeri FM, Rucco R, Zubizarreta-Macho Á, Alonso Pérez-Barquero J, Riad Deglow E et al (2020) Influence of drilling technique on the radiographic, thermographic, and geomorphometric effects of dental implant drills and osteotomy site preparations. J Clin Med 9(11):E3631. https://doi.org/10.3390/jcm9113631

    Article  PubMed  Google Scholar 

  29. Li WT, Li P, Piao MZ, Zhang F, Di J (2020) Study on bone volume harvested from the implant sites with different methods. Beijing Da Xue Xue Bao 52(1):103–106. https://doi.org/10.19723/j.issn.1671-167X.2020.01.016

    Article  PubMed  Google Scholar 

  30. Favero V, Sakuma S, Apaza Alccayhuaman KA, Benedetto GA, Bengazi F, Botticelli D (2018) Healing at sites prepared using different drilling protocols. An experimental study in the tibiae of sheep. PLoS One 13(8):e0202957. https://doi.org/10.1371/journal.pone.0202957

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gaspar J, Borrecho G, Oliveira P, Salvado F, Martins dos Santos J (2013) Osteotomy at low-speed drilling without irrigation versus high-speed drilling with irrigation: an experimental study. Acta Medica Port 26(3):231–236

    Google Scholar 

  32. Pellicer-Chover H, Peñarrocha-Oltra D, Aloy-Prosper A, Sanchis-Gonzalez JC, Peñarrocha-Diago MA, Peñarrocha-Diago M (2017) Comparison of peri-implant bone loss between conventional drilling with irrigation versus low-speed drilling without irrigation. Med Oral Patol Oral Cir Bucal 22(6):e730–e736. https://doi.org/10.4317/medoral.21694

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tabassum A, Wismeijer D, Hogervorst JMA, Tahmaseb A (2020) Comparison of proliferation and differentiation of human osteoblast-like cells harvested during implant osteotomy preparation using two different drilling protocols. Int J Oral Maxillofac Implants 35(1):141–149. https://doi.org/10.1016/s0142-9612(97)00172-5

    Article  PubMed  Google Scholar 

  34. Liang C, Lin X, Wang SL, Guo LH, Wang XY, Li J (2017) Osteogenic potential of three different autogenous bone particles harvested during implant surgery. Oral Dis 23(8):1099–1108. https://doi.org/10.1111/odi.12704

    Article  PubMed  Google Scholar 

  35. Anitua E (2018) Biological drilling: implant site preparation in a conservative manner and obtaining autogenous bone grafts. Balk J Dent Med 22:98–101. https://doi.org/10.2478/bjdm-2018-0017

    Article  Google Scholar 

  36. Kniha K, Heussen N, Weber E, Möhlhenrich S, Hölzle F, Modabber A (2020) Temperature threshold values of bone necrosis for thermo-explantation of dental implants-a systematic review on preclinical in vivo research. Materials (Basel) 13(16):3461. https://doi.org/10.3390/ma13163461

    Article  Google Scholar 

  37. Harder S, Egert C, Freitag-Wolf S, Mehl C, Kern M (2018) Intraosseous temperature changes during implant site preparation: in vitro comparison of thermocouples and infrared thermography. Int J Oral Maxillofac Implants 33(1):72–78. https://doi.org/10.11607/jomi.6222

    Article  PubMed  Google Scholar 

  38. Marković A, Mišić T, Mančić D, Jovanović I, Šćepanović M, Jezdić Z (2014) Real-time thermographic analysis of low-density bone during implant placement: a randomized parallel-group clinical study comparing lateral condensation with bone drilling surgical technique. Clin Oral Implants Res 25(8):910–918. https://doi.org/10.1111/clr.12191

    Article  PubMed  Google Scholar 

  39. Varghai K, Wang R, Eppell SJ (2020) Effect of drilling speed on dental implant insertion torque. J Oral Implantol 46(5):467–474. https://doi.org/10.1563/aaid-joi-D-18-00250

    Article  PubMed  Google Scholar 

  40. Jung RE, Thoma DS, Hammerle CHF (2008) Assessment of the potential of growth factors for localized alveolar ridge augmentation: a systematic review. J Clin Periodontol 35(SUPPL. 8):255–281. https://doi.org/10.1111/j.1600-051X.2008.01270.x

    Article  PubMed  Google Scholar 

  41. Manzano-Moreno FJ, Rodríguez-Martínez JB, Ramos-Torrecillas J, Vallecillo-Capilla MF, Ruiz C, García-Martínez O et al (2013) Proliferation and osteogenic differentiation of osteoblast-like cells obtained from two techniques for harvesting intraoral bone grafts. Clin Oral Investig 17(5):1349–1356. https://doi.org/10.1007/s00784-012-0811-4

    Article  PubMed  Google Scholar 

  42. Piattelli A, Piattelli M, Mangano C, Scarano A (1998) A histologic evaluation of eight cases of failed dental implants: is bone overheating the most probable cause? Biomaterials 19(7-9):683–690. https://doi.org/10.1016/s0142-9612(97)00172-5

    Article  PubMed  Google Scholar 

  43. Norton MR, Gamble C (2000) Bone classification: an objective scale of bone density using the computerized tomography scan. Clin Oral Implants Res 12(1):79–84. https://doi.org/10.1034/j.1600-0501.2001.012001079.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Bernabeu-Mira.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernabeu-Mira, J.C., Soto-Peñaloza, D., Peñarrocha-Diago, M. et al. Low-speed drilling without irrigation versus conventional drilling for dental implant osteotomy preparation: a systematic review. Clin Oral Invest 25, 4251–4267 (2021). https://doi.org/10.1007/s00784-021-03939-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-021-03939-z

Keywords

Navigation