Skip to main content

Advertisement

Log in

Tissue-specific biomarkers in gingival crevicular fluid are correlated with external root resorption caused by constant mechanical load: an in vivo study

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

This study investigated the association of changes in cementum protein-1 (CEMP-1), dentine phosphoprotein (DPP), and c-terminal cross-linked telopeptide of type I collagen (CTX-I) levels in human gingival crevicular fluid (GCF) under constant load with external root resorption volume and amount of tooth movement.

Materials and methods

In total, 11 healthy adult patients (mean age, 23.5 years [range, 18.3–37.7]; four men and seven women) were enrolled. GCF samples were obtained from premolars at T0, T1 (1 day), T2 (1 week), T3 (2 weeks), T4 (4 weeks), and T5 (8 weeks) under constant 100-gm buccal tipping force. Opposite premolars were used as controls. Teeth were extracted at T5, followed by quantification of external root resorption volume and histological analysis.

Results

In the test group, T5/T0 ratios of CEMP-1 and DPP levels, differential CEMP-1 levels between T5 and T0, and differential DPP levels between T2 and T0 correlated positively with root resorption volume (r = 0.734, 0.730, 0.627, and 0.612, respectively, all p < 0.05). CEMP-1 levels at T0 and T3 correlated negatively with root resorption volume (r = −0.603 and −0.706; all p < 0.05). CTX-I levels at T5 correlated positively with the amount of tooth movement (r = 0.848, p < 0.01).

Conclusions

Alterations in CEMP-1 and DPP levels in human GCF at specific timepoints during orthodontic treatment may be associated with different degrees of external root resorption.

Clinical relevance

This study demonstrates that changes in the levels of tissue-specific biomarkers in GCF may facilitate early detection of external root resorption during orthodontic tooth movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Killiany DM (1999) Root resorption caused by orthodontic treatment: an evidence-based review of literature. Semin Orthod 5(2):128–133. https://doi.org/10.1016/S1073-8746(99)80032-2

    Article  PubMed  Google Scholar 

  2. Darcey J, Qualtrough A (2013) Resorption: part 1. Pathology, classification and aetiology. Br Dent J 214(9):439–451. https://doi.org/10.1038/sj.bdj.2013.431

    Article  PubMed  Google Scholar 

  3. Acar A, Canyurek U, Kocaaga M, Erverdi N (1999) Continuous vs. discontinuous force application and root resorption. Angle Orthod 69(2):159–163. https://doi.org/10.1043/0003-3219(1999)069<0159:CVDFAA>2.3.CO;2

    Article  PubMed  Google Scholar 

  4. Ono E, Medici Filho E, Faig Leite H, Tanaka JL, De Moraes ME, De Melo Castilho JC (2011) Evaluation of simulated external root resorptions with digital radiography and digital subtraction radiography. Am J Orthod Dentofac Orthop 139(3):324–333. https://doi.org/10.1016/j.ajodo.2009.03.046

    Article  Google Scholar 

  5. Nakata K, Naitoh M, Izumi M, Ariji E, Nakamura H (2009) Evaluation of correspondence of dental computed tomography imaging to anatomic observation of external root resorption. J Endod 35(11):1594–1597. https://doi.org/10.1016/j.joen.2009.05.029

    Article  PubMed  Google Scholar 

  6. Lermen CA, Liedke GS, da Silveira HE, da Silveira HL, Mazzola AA, de Figueiredo JA (2010) Comparison between two tomographic sections in the diagnosis of external root resorption. J Appl Oral Sci 18(3):303–307. https://doi.org/10.1590/s1678-77572010000300019

    Article  PubMed  PubMed Central  Google Scholar 

  7. Andreasen FM, Sewerin I, Mandel U, Andreasen JO (1987) Radiographic assessment of simulated root resorption cavities. Endod Dent Traumatol 3(1):21–27. https://doi.org/10.1111/j.1600-9657.1987.tb00167.x

    Article  PubMed  Google Scholar 

  8. Waddington RJ, Embery G (2001) Proteoglycans and orthodontic tooth movement. J Orthod 28(4):281–290. https://doi.org/10.1093/ortho/28.4.281

    Article  PubMed  Google Scholar 

  9. Uematsu S, Mogi M, Deguchi T (1996) Interleukin (IL)-1 beta, IL-6, tumor necrosis factor-alpha, epidermal growth factor, and beta 2-microglobulin levels are elevated in gingival crevicular fluid during human orthodontic tooth movement. J Dent Res 75(1):562–567. https://doi.org/10.1177/00220345960750010801

    Article  PubMed  Google Scholar 

  10. Vieira GM (2014) Protein biomarkers of external root resorption: a new protein extraction protocol. Are we going in the right direction? Dental Press J Orthod 19(6):62–69. https://doi.org/10.1590/2176-9451.19.6.062-069.oar

    Article  PubMed  PubMed Central  Google Scholar 

  11. Balducci L, Ramachandran A, Hao J, Narayanan K, Evans C, George A (2007) Biological markers for evaluation of root resorption. Arch Oral Biol 52(3):203–208. https://doi.org/10.1016/j.archoralbio.2006.08.018

    Article  PubMed  Google Scholar 

  12. Soenjaya Y, Foster BL, Nociti FH Jr, Ao M, Holdsworth DW, Hunter GK, Somerman MJ, Goldberg HA (2015) Mechanical forces exacerbate periodontal defects in Bsp-null mice. J Dent Res 94(9):1276–1285. https://doi.org/10.1177/0022034515592581

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rody WJ Jr, King GJ, Gu G (2001) Osteoclast recruitment to sites of compression in orthodontic tooth movement. Am J Orthod Dentofac Orthop 120(5):477–489. https://doi.org/10.1067/mod.2001.118623

    Article  Google Scholar 

  14. Tyrovola JB, Perrea D, Halazonetis DJ, Dontas I, Vlachos IS, Makou M (2010) Relation of soluble RANKL and osteoprotegerin levels in blood and gingival crevicular fluid to the degree of root resorption after orthodontic tooth movement. J Oral Sci 52(2):299–311. https://doi.org/10.2334/josnusd.52.299

    Article  PubMed  Google Scholar 

  15. Ahuja R, Almuzian M, Khan A, Pascovici D, Dalci O, Darendeliler MA (2017) A preliminary investigation of short-term cytokine expression in gingival crevicular fluid secondary to high-level orthodontic forces and the associated root resorption: case series analytical study. Prog Orthod 18(1):23. https://doi.org/10.1186/s40510-017-0177-x

    Article  PubMed  PubMed Central  Google Scholar 

  16. Komaki M, Iwasaki K, Arzate H, Narayanan AS, Izumi Y, Morita I (2012) Cementum protein 1 (CEMP1) induces a cementoblastic phenotype and reduces osteoblastic differentiation in periodontal ligament cells. J Cell Physiol 227(2):649–657. https://doi.org/10.1002/jcp.22770

    Article  PubMed  Google Scholar 

  17. Arzate H, Zeichner-David M, Mercado-Celis G (2015) Cementum proteins: role in cementogenesis, biomineralization, periodontium formation and regeneration. Periodontol 67(1):211–233. https://doi.org/10.1111/prd.12062

    Article  Google Scholar 

  18. Fisher LW, Torchia DA, Fohr B, Young MF, Fedarko NS (2001) Flexible structures of SIBLING proteins, bone sialoprotein, and osteopontin. Biochem Biophys Res Commun 280(2):460–465. https://doi.org/10.1006/bbrc.2000.4146

    Article  PubMed  Google Scholar 

  19. Akman AC, Buyukozdemir Askin S, Guncu GN, Nohutcu RM (2018) Evaluation of gingival crevicular fluid and peri-implant sulcus fluid levels of periostin: a preliminary report. J Periodontol 89(2):195–202. https://doi.org/10.1902/jop.2017.170315

    Article  PubMed  Google Scholar 

  20. Cesur MG, Ozturk VO, Afacan B, Sirin FB, Alkan A, Ozer T (2019) Comparison of BALP, CTX-I, and IL-4 levels around miniscrew implants during orthodontic tooth movement between two different amounts of force. Angle Orthod 89(4):630–636. https://doi.org/10.2319/071718-520.1

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lee CY, Suzuki JB (2010) CTX biochemical marker of bone metabolism. Is it a reliable predictor of bisphosphonate-associated osteonecrosis of the jaws after surgery? Part II: a prospective clinical study. Implant Dent 19(1):29–38. https://doi.org/10.1097/ID.0b013e3181cec8bc

    Article  PubMed  Google Scholar 

  22. Garnero P, Ferreras M, Karsdal MA, Nicamhlaoibh R, Risteli J, Borel O, Qvist P, Delmas PD, Foged NT, Delaisse JM (2003) The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation. J Bone Miner Res 18(5):859–867. https://doi.org/10.1359/jbmr.2003.18.5.859

    Article  PubMed  Google Scholar 

  23. Löe H (1967) The gingival index, the plaque index and the retention index systems. J Periodontol 38(6):Supple:610–616. https://doi.org/10.1902/jop.1967.38.6.610

  24. Varghese F, Bukhari AB, Malhotra R, De A (2014) IHC profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS One 9(5):e96801. https://doi.org/10.1371/journal.pone.0096801

    Article  PubMed  PubMed Central  Google Scholar 

  25. De Aguiar MC, Perinetti G, Capelli J Jr (2017) The gingival crevicular fluid as a source of biomarkers to enhance efficiency of orthodontic and functional treatment of growing patients. Biomed Res Int 2017:3257235–3257237. https://doi.org/10.1155/2017/3257235

    Article  PubMed  PubMed Central  Google Scholar 

  26. Goutoudi P, Diza E, Arvanitidou M (2004) Effect of periodontal therapy on crevicular fluid interleukin-1beta and interleukin-10 levels in chronic periodontitis. J Dent 32(7):511–520. https://doi.org/10.1016/j.jdent.2004.04.003

    Article  PubMed  Google Scholar 

  27. Alvarez-Perez MA, Narayanan S, Zeichner-David M, Rodriguez Carmona B, Arzate H (2006) Molecular cloning, expression and immunolocalization of a novel human cementum-derived protein (CP-23). Bone 38(3):409–419. https://doi.org/10.1016/j.bone.2005.09.009

    Article  PubMed  Google Scholar 

  28. Park JY, Jeon SH, Choung PH (2011) Efficacy of periodontal stem cell transplantation in the treatment of advanced periodontitis. Cell Transplant 20(2):271–285. https://doi.org/10.3727/096368910X519292

    Article  PubMed  Google Scholar 

  29. Wehrbein H, Fuhrmann RA, Diedrich PR (1995) Human histologic tissue response after long-term orthodontic tooth movement. Am J Orthod Dentofac Orthop 107(4):360–371. https://doi.org/10.1016/s0889-5406(95)70088-9

    Article  Google Scholar 

  30. Ren Y, Vissink A (2008) Cytokines in crevicular fluid and orthodontic tooth movement. Eur J Oral Sci 116(2):89–97. https://doi.org/10.1111/j.1600-0722.2007.00511.x

    Article  PubMed  Google Scholar 

  31. Diercke K, Konig A, Kohl A, Lux CJ, Erber R (2012) Human primary cementoblasts respond to combined IL-1beta stimulation and compression with an impaired BSP and CEMP-1 expression. Eur J Cell Biol 91(5):402–412. https://doi.org/10.1016/j.ejcb.2011.12.005

    Article  PubMed  Google Scholar 

  32. Butler WT, Ritchie H (1995) The nature and functional significance of dentin extracellular matrix proteins. Int J Dev Biol 39(1):169–179

    PubMed  Google Scholar 

  33. Hao J, Ramachandran A, George A (2009) Temporal and spatial localization of the dentin matrix proteins during dentin biomineralization. J Histochem Cytochem 57(3):227–237. https://doi.org/10.1369/jhc.2008.952119

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wan Hassan WN, Stephenson PA, Waddington RJ, Sloan AJ (2012) An ex vivo culture model for orthodontically induced root resorption. J Dent 40(5):406–415. https://doi.org/10.1016/j.jdent.2012.02.002

    Article  PubMed  Google Scholar 

  35. Mah J, Prasad N (2004) Dentine phosphoproteins in gingival crevicular fluid during root resorption. Eur J Orthod 26(1):25–30. https://doi.org/10.1093/ejo/26.1.25

    Article  PubMed  Google Scholar 

  36. King GJ, Keeling SD, Wronski TJ (1991) Histomorphometric study of alveolar bone turnover in orthodontic tooth movement. Bone 12(6):401–409. https://doi.org/10.1016/8756-3282(91)90029-i

    Article  PubMed  Google Scholar 

  37. Lv S, Liu H, Cui J, Hasegawa T, Hongo H, Feng W, Li J, Sun B, Kudo A, Amizuka N, Li M (2014) Histochemical examination of cathepsin K, MMP1 and MMP2 in compressed periodontal ligament during orthodontic tooth movement in periostin deficient mice. J Mol Histol 45(3):303–309. https://doi.org/10.1007/s10735-013-9548-x

    Article  PubMed  Google Scholar 

  38. Son H, Jeon M, Choi HJ, Lee HS, Kim IH, Kang CM, Song JS (2019) Decellularized human periodontal ligament for periodontium regeneration. PLoS One 14(8):e0221236. https://doi.org/10.1371/journal.pone.0221236

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ghoneima AA, Allam ES, Zunt SL, Windsor LJ (2010) Bisphosphonates treatment and orthodontic considerations. Orthod Craniofacial Res 13(1):1–10. https://doi.org/10.1111/j.1601-6343.2009.01472.x

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by a faculty research grant of Yonsei University College of Dentistry for 2017-0012.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Kee-Joon Lee. Methodology: Kee-Joon Lee. Formal analysis: Gui-Yue Huang. Investigation: Kee-Joon Lee and Gui-Yue Huang. Validation: Kee-Joon Lee. Data curation: Kee-Joon Lee. Writing — original draft: Gui-Yue Huang. Visualization: Gui-Yue Huang. Writing — review and editing: Sung-Hwan Choi, Hwi-Dong Jung, Hyun Sil Kim, Chung-Ju Hwang, and Kee-Joon Lee. Resources: Kee-Joon Lee. Supervision: Kee-Joon Lee. Project administration: Kee-Joon Lee. Funding acquisition: Kee-Joon Lee.

Corresponding author

Correspondence to Kee-Joon Lee.

Ethics declarations

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the institutional review board of Yonsei University Dental Hospital (No. 2-2017-0014).

Informed consent

Written informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, GY., Choi, SH., Jung, HD. et al. Tissue-specific biomarkers in gingival crevicular fluid are correlated with external root resorption caused by constant mechanical load: an in vivo study. Clin Oral Invest 25, 6321–6333 (2021). https://doi.org/10.1007/s00784-021-03932-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-021-03932-6

Keywords

Navigation