Skip to main content

Advertisement

Log in

Influence of the image file format of digital periapical radiographs on the diagnosis of external and internal root resorptions

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the influence of different image file formats of digital radiographic images on the diagnosis of external (ERR) and internal root resorption (IRR).

Materials and methods

Thirty-four human teeth were selected. For ERR, 20 teeth were used (10 control and 10 with simulated ERR), and for IRR, 14 teeth were used (before and after IRR simulation). Digital periapical radiographs were acquired using the Digora Toto system and exported in four different image file formats: TIFF, BMP, PNG, and JPEG, totaling 192 radiographs. Five examiners evaluated the images using the JPEGView software and scored the detection of ERR or IRR on a 5-point scale. Sensitivity, specificity, accuracy, and the area under the ROC curve were obtained for the diagnosis of ERR and IRR in the different image file formats. Two-way ANOVA compared the diagnostic values between the file formats and the Kappa test assessed intra- and inter-examiner agreement. The significance level was set at 5% (α = 0.05).

Results

The mean values of intra-examiner agreement were substantial (0.740) for ERR and almost perfect (0.836) for IRR and, inter-examiner was fair (0.263) and moderate (0.421), respectively. No statistically significant differences were found among the different file formats for the diagnostic values of ERR and IRR.

Conclusion

The file format of digital radiographs does not influence the diagnosis of ERR and IRR.

Clinical relevance

Digital radiographic images may be susceptible to computational factors; however, they can be stored in multiple file formats without affecting the diagnosis of dental root resorptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yoon DC, Mol A, Benn DK, Benavides E (2018) Digital radiographic image processing and analysis. Dent Clin North Am. 62:341–359. https://doi.org/10.1016/j.cden.2018.03.001

    Article  PubMed  Google Scholar 

  2. Svenson B, Ståhlnacke K, Karlsson R, Fält A (2018) Dentists’ use of digital radiographic techniques: part I–intraoral X-ray: a questionnaire study of Swedish dentists. Acta Odontol Scand. 76:111–118. https://doi.org/10.1080/00016357.2017.1387930

    Article  PubMed  Google Scholar 

  3. Farias Gomes A, Nejaim Y, Fontenele RC, Haiter-Neto FFD (2019) Influence of the incorporation of a lead foil to intraoral digital receptors on the image quality and root fracture diagnosisd foil on image quality. Dentomaxillofac Radiol. 48:2018. https://doi.org/10.1259/dmfr.20180369

    Article  Google Scholar 

  4. Wenzel A, Møystad A (2010) Work flow with digital intraoral radiography: a systematic review. Acta Odontol Scand. 68:106–114. https://doi.org/10.3109/00016350903514426

    Article  PubMed  Google Scholar 

  5. Fidler A, Likar B, Skalerič U (2006) Lossy JPEG compression: easy to compress, hard to compare. Dentomaxillofacial Radiol. 35:67–73. https://doi.org/10.1259/dmfr/52842661

    Article  Google Scholar 

  6. Burgess J (2015) Digital DICOM in dentistry. Open Dent J. 9:330–336. https://doi.org/10.2174/1874210601509010330

    Article  PubMed  PubMed Central  Google Scholar 

  7. Janhom A, Van Der Stelt PF, Sanderink GCH (2002) A comparison of two compression algorithms and the detection of caries. Dentomaxillofacial Radiol. 31:257–263. https://doi.org/10.1038/sj.dmfr

    Article  Google Scholar 

  8. Wiggins RH, Davidson HC, Harnsberger HR, Lauman JR, Goede PA (2001) Image file formats: past, present, and future. Radiographics. 21:789–798. https://doi.org/10.1148/radiographics.21.3.g01ma25789

    Article  PubMed  Google Scholar 

  9. Eraso FE, Analoui M, Watson AB, Rebeschini R (2002) Impact of lossy compression on diagnostic accuracy of radiographs for periapical lesions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 93:621–625. https://doi.org/10.1067/moe.2002.122640

    Article  PubMed  Google Scholar 

  10. Schulze RKW, Richter A, D’Hoedt B (2008) The effect of wavelet and discrete cosine transform compression of digital radiographs on the detection of subtle proximal caries. Caries Res. 42:334–339. https://doi.org/10.1159/000151328

    Article  PubMed  Google Scholar 

  11. Pabla T, Ludlow JB, Tyndall DA, Platin E, Abreu M (2003) Effect of data compression on proximal caries detection: observer performance with DenOptix® photostimulable phosphor images. Dentomaxillofacial Radiol. 32:45–49. https://doi.org/10.1259/dmfr/19650275

    Article  Google Scholar 

  12. Wenzel A, Gotfredsen E, Borg E, Gröndahl HG (1996) Impact of lossy image compression on accuracy of caries detection in digital images taken with a storage phosphor system. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 81:351–355. https://doi.org/10.1016/s1079-2104(96)80336-2

    Article  PubMed  Google Scholar 

  13. Noujeim M, Geha H, Shintaku W, Bechara B, Kashi KA (2012) Effect of JPEG compression on the diagnostic accuracy of periapical images in the detection of root fracture. Dent Traumatol. 28:233–237. https://doi.org/10.1111/j.1600-9657.2011.01076.x

    Article  PubMed  Google Scholar 

  14. Gegler A, Mahl CEW, Fontanella V (2006) Reproducibility of and file format effect on digital subtraction radiography of simulated external root resorptions. Dentomaxillofacial Radiol. 35:10–13. https://doi.org/10.1259/dmfr/86879455

    Article  Google Scholar 

  15. Nascimento EHL, Gaêta-Araujo H, Galvão NS, Moreira-Souza L, Oliveira-Santos C, Freitas DQ (2019) Effect of brightness and contrast variation for detectability of root resorption lesions in digital intraoral radiographs. Clin Oral Investig. 23:3379–3386. https://doi.org/10.1007/s00784-018-2764-8

    Article  PubMed  Google Scholar 

  16. Mesgarani A, Haghanifar S, Ehsani M, Yaghub SD, Bijani A (2014) Accuracy of conventional and digital radiography in detecting external root resorption. Iran Endod J 9:241–245

    PubMed  PubMed Central  Google Scholar 

  17. Darcey J, Qualtrough A (2016) Root resorption: simplifying diagnosis and improving outcomes. Prim Dent J. 5:36–45. https://doi.org/10.1308/205016816819304222

    Article  PubMed  Google Scholar 

  18. Lima TF, Gamba TO, Zaia AA, Soares AJ (2016) Evaluation of cone beam computed tomography and periapical radiography in the diagnosis of root resorption. Aust Dent J. 61:425–431. https://doi.org/10.1111/adj.12407

    Article  PubMed  Google Scholar 

  19. Sousa Melo SL, Vasconcelos K d F, Holton N, Allareddy V, Allareddy V, Tabchoury CPM et al (2017) Impact of cone-beam computed tomography scan mode on the diagnostic yield of chemically simulated external root resorption. Am J Orthod Dentofac Orthop. 151:1073–1082. https://doi.org/10.1016/j.ajodo.2016.10.041

    Article  Google Scholar 

  20. Da Silveira PF, Vizzotto MB, Montagner F, Da Silveira HLD, Da Silveira HED (2014) Development of a new in vitro methodology to simulate internal root resorption. J Endod. 40:211–216. https://doi.org/10.1016/j.joen.2013.07.007

    Article  PubMed  Google Scholar 

  21. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics. 33:159

    Article  Google Scholar 

  22. Fidler A, Skalerič U, Likar B (2007) The effect of image content on detail preservation and file size reduction in lossy compression. Dentomaxillofacial Radiol. 36:387–392. https://doi.org/10.1259/dmfr/66171128

    Article  Google Scholar 

  23. Erickson BJ (2002) Irreversible compression of medical images. J Digit Imaging. 15:5–14. https://doi.org/10.1007/s10278-002-0001-z

    Article  PubMed  PubMed Central  Google Scholar 

  24. Persons K, Palisson P, Manduca A, Erickson BJ, Savcenko V (1997) An analytical look at the effects of compression on medical images. J Digit Imaging. 1:60–66. https://doi.org/10.1007/BF03168659

    Article  Google Scholar 

  25. Kamburoǧlu K, Tsesis I, Kfir A, Kaffe I (2008) Diagnosis of artificially induced external root resorption using conventional intraoral film radiography, CCD, and PSP: an ex vivo study. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontol 106:885–891. https://doi.org/10.1016/j.tripleo.2008.01.005

    Article  Google Scholar 

  26. Lima CAS, Freitas DQ, Ambrosano GMB, Haiter-Neto F, Oliveira ML (2019) Influence of interpretation conditions on the subjective differentiation of radiographic contrast of images obtained with a digital intraoral system. Oral Surg Oral Med Oral Pathol Oral Radiol. 127:444–450. https://doi.org/10.1016/j.oooo.2019.01.003

    Article  PubMed  Google Scholar 

  27. Lima CAS, Nascimento EHL, Gaêta-Araujo H, Oliveira-Santos C, Freitas DQ, Haiter-Neto F, Oliveira ML (2020) Is the digital radiographic detection of approximal caries lesions influenced by viewing conditions? Oral Surg Oral Med Oral Pathol Oral Radiol. 129:165–170. https://doi.org/10.1016/j.oooo.2019.08.007

    Article  PubMed  Google Scholar 

  28. Heo MS, Choi DH, Benavides E, Huh KH, Yi WJ, Lee SS, Choi SC (2009) Effect of bit depth and kVp of digital radiography for detection of subtle differences. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 108:278–283. https://doi.org/10.1016/j.tripleo.2008.12.053

    Article  PubMed  Google Scholar 

  29. Wenzel A, Haiter-Neto F, Gotfredsen E (2007) Influence of spatial resolution and bit depth on detection of small caries lesions with digital receptors. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 103:418–422. https://doi.org/10.1016/j.tripleo.2006.05.016

    Article  PubMed  Google Scholar 

  30. Koenig L, Parks E, Analoui M, Eckert G (2004) The impact of image compression on diagnostic quality of digital images for detection of chemically-induced periapical lesions. Dentomaxillofacial Radiol. 33:37–43. https://doi.org/10.1259/dmfr/30099843

    Article  Google Scholar 

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (Capes)—Finance Code 001. The authors deny any conflicts of interest related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murilo Miranda-Viana.

Ethics declarations

Ethics approval and consent to participate

This study was carried out after local Institutional Review Board approval (protocol number #3.927.375).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda-Viana, M., Madlum, D.V., Oliveira-Santos, N. et al. Influence of the image file format of digital periapical radiographs on the diagnosis of external and internal root resorptions. Clin Oral Invest 25, 4941–4948 (2021). https://doi.org/10.1007/s00784-021-03803-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-021-03803-0

Keywords

Navigation