Skip to main content

Advertisement

Log in

Evaluation of salivary VOC profile composition directed towards oral cancer and oral lesion assessment

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Endogenous substances have been analyzed in biological samples in order to be related with metabolic dysfunctions and diseases. The study aimed to investigate profiles of volatile organic compounds (VOCs) from fresh and incubated saliva donated by healthy controls, individuals with oral tissue lesions and with oral cancer, in order to assess case-specific biomarkers of oxidative stress.

Materials and methods

VOCs were pre-concentrated using headspace-solid phase microextraction and analyzed using gas chromatography-mass spectrometry. Then, VOCs positively modulated by incubation process were subtracted, yielding profiles with selected features. Principal component analysis and hierarchical cluster analysis were used to inspect data distribution, while univariate statistics was applied to indicate potential markers of oral cancer. Machine learning algorithm was implemented, aiming multiclass prediction.

Results

The removal of bacterial contribution to VOC profiles allowed the obtaining of more specific case-related patterns. Artificial neural network model included 9 most relevant compounds (1-octen-3-ol, hexanoic acid, E-2-octenal, heptanoic acid, octanoic acid, E-2-nonenal, nonanoic acid, 2,4-decadienal and 9-undecenoic acid). Model performance was assessed using 10-fold cross validation and receiver operating characteristic curves. Obtained overall accuracy was 90%. Oral cancer cases were predicted with 100% of sensitivity and specificity.

Conclusions

The selected VOCs were ascribed to lipid oxidation mechanism and presented potential to differentiate oral cancer from other inflammatory conditions.

Clinical relevance

These results highlight the importance of interpretation of saliva composition and the clinical value of salivary VOCs. Elucidated metabolic alterations have the potential to aid the early detection of oral cancer and the monitoring of oral lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Clish CB (2015) Metabolomics: an emerging but powerful tool for precision medicine. Mol Case Stud 1:a000588. https://doi.org/10.1101/mcs.a000588

    Article  Google Scholar 

  2. Sandlers Y (2017) The future perspective: metabolomics in laboratory medicine for inborn errors of metabolism. Transl Res 189:65–75. https://doi.org/10.1016/j.trsl.2017.06.005

    Article  PubMed  Google Scholar 

  3. Buszewski B, Kęsy M, Ligor T, Amann A (2007) Human exhaled air analytics: biomarkers of diseases. Biomed Chromatogr 21:553–566. https://doi.org/10.1002/bmc.835

    Article  PubMed  Google Scholar 

  4. Hakim M, Broza YY, Barash O, Peled N, Phillips M, Amann A, Haick H (2012) Volatile organic compounds of lung cancer and possible biochemical pathways. Chem Rev 112:5949–5966. https://doi.org/10.1021/cr300174a

    Article  PubMed  Google Scholar 

  5. Monedeiro F, dos Reis RB, Peria FM, Sares CTG, de Martinis BS (2020) Investigation of sweat VOC profiles in assessment of cancer biomarkers using HS-GC-MS. J Breath Res 14:026009. https://doi.org/10.1088/1752-7163/ab5b3c

    Article  PubMed  Google Scholar 

  6. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P (2018) Oxidative stress, aging, and diseases. Clin Interv Aging 13:757–772. https://doi.org/10.2147/CIA.S158513

    Article  PubMed  PubMed Central  Google Scholar 

  7. Khanna H, Karki K, Pande D, et al (2014) Inflammation, free radical damage, Oxidative Stress and Cancer Interdiscip J Microinflammation 01: https://doi.org/10.4172/ijm.1000109

  8. Davies K (2001) Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 50:279–289. https://doi.org/10.1080/713803728

    Article  Google Scholar 

  9. Frijhoff J, Winyard PG, Zarkovic N, Davies SS, Stocker R, Cheng D, Knight AR, Taylor EL, Oettrich J, Ruskovska T, Gasparovic AC, Cuadrado A, Weber D, Poulsen HE, Grune T, Schmidt HHHW, Ghezzi P (2015) Clinical relevance of biomarkers of oxidative stress. Antioxid Redox Signal 23:1144–1170. https://doi.org/10.1089/ars.2015.6317

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, Znaor A, Bray F (2019) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 144:1941–1953. https://doi.org/10.1002/ijc.31937

    Article  PubMed  Google Scholar 

  11. Neville BW, Day TA (2002) Oral Cancer and precancerous lesions. CA Cancer J Clin 52:195–215. https://doi.org/10.3322/canjclin.52.4.195

    Article  PubMed  Google Scholar 

  12. Rivera C (2015) Essentials of oral cancer. Int J Clin Exp Pathol 8:11884–11894. https://doi.org/10.5281/zenodo.192487

    Article  PubMed  PubMed Central  Google Scholar 

  13. van der Waal I, de Bree R, Brakenhoff R, Coebergh J (2011) Early diagnosis in primary oral cancer: is it possible? Med Oral Patol Oral Cir Bucal 16:e300–e305. https://doi.org/10.4317/medoral.16.e300

    Article  PubMed  Google Scholar 

  14. Pfaffe T, Cooper-White J, Beyerlein P, Kostner K, Punyadeera C (2011) Diagnostic potential of saliva: current state and future applications. Clin Chem 57:675–687. https://doi.org/10.1373/clinchem.2010.153767

    Article  PubMed  Google Scholar 

  15. Milanowski M, Pomastowski P, Ligor T, Buszewski B (2017) Saliva – volatile biomarkers and profiles. Crit Rev Anal Chem 47:251–266. https://doi.org/10.1080/10408347.2016.1266925

    Article  PubMed  Google Scholar 

  16. Caporossi L, Santoro A, Papaleo B (2010) Saliva as an analytical matrix: state of the art and application for biomonitoring. Biomarkers 15:475–487. https://doi.org/10.3109/1354750X.2010.481364

    Article  PubMed  Google Scholar 

  17. Bosch JA (2014) The use of saliva markers in psychobiology: mechanisms and methods. In: Monographs in Oral Science. S. Karger AG, pp. 99–108

  18. Chiappin S, Antonelli G, Gatti R, De Palo EF (2007) Saliva specimen: a new laboratory tool for diagnostic and basic investigation. Clin Chim Acta 383:30–40. https://doi.org/10.1016/j.cca.2007.04.011

    Article  PubMed  Google Scholar 

  19. Bhattarai KR, Kim H-R, Chae H-J (2018) Compliance with saliva collection protocol in healthy volunteers: strategies for managing risk and errors. Int J Med Sci 15:823–831. https://doi.org/10.7150/ijms.25146

    Article  PubMed  PubMed Central  Google Scholar 

  20. Buszewski B, Milanowski M, Ligor T, Pomastowski P (2017) Investigation of bacterial viability from incubated saliva by application of flow cytometry and hyphenated separation techniques. Electrophoresis 38:2081–2088. https://doi.org/10.1002/elps.201700057

    Article  PubMed  Google Scholar 

  21. Monedeiro F, Milanowski M, Ratiu I-A, Zmysłowski H, Ligor T, Buszewski B (2019) VOC profiles of saliva in assessment of halitosis and submandibular abscesses using HS-SPME-GC/MS technique. Molecules 24:2977. https://doi.org/10.3390/molecules24162977

    Article  PubMed Central  Google Scholar 

  22. Roager HM, Licht TR (2018) Microbial tryptophan catabolites in health and disease. Nat Commun 9:3294. https://doi.org/10.1038/s41467-018-05470-4

    Article  PubMed  PubMed Central  Google Scholar 

  23. Audrain B, Farag MA, Ryu CM, Ghigo JM (2015) Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Rev 39:222–233. https://doi.org/10.1093/femsre/fuu013

    Article  PubMed  Google Scholar 

  24. Denawaka CJ, Fowlis IA, Dean JR (2016) Source, impact and removal of malodour from soiled clothing. J Chromatogr A 1438:216–225. https://doi.org/10.1016/j.chroma.2016.02.037

    Article  PubMed  Google Scholar 

  25. Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842. https://doi.org/10.1039/b507392h

    Article  PubMed  Google Scholar 

  26. Windey K, De Preter V, Verbeke K (2012) Relevance of protein fermentation to gut health. Mol Nutr Food Res 56:184–196. https://doi.org/10.1002/mnfr.201100542

    Article  PubMed  Google Scholar 

  27. Montel MC, Masson F, Talon R (1998) Bacterial role in flavour development. Meat Sci 49:S111–S123. https://doi.org/10.1016/S0309-1740(98)90042-0

    Article  Google Scholar 

  28. Lamberet G, Auberger B, Bergère JL (1997) Aptitude of cheese bacteria for volatile S -methyl thioester synthesis I. effect of substrates and pH on their formation by Brevibacterium linens GC171. Appl Microbiol Biotechnol 47:279–283. https://doi.org/10.1007/s002530050927

    Article  Google Scholar 

  29. Sourabié AM, Spinnler H-E, Bourdat-Deschamps M, Tallon R, Landaud S, Bonnarme P (2012) S-methyl thioesters are produced from fatty acids and branched-chain amino acids by brevibacteria: focus on l-leucine catabolic pathway and identification of acyl–CoA intermediates. Appl Microbiol Biotechnol 93:1673–1683. https://doi.org/10.1007/s00253-011-3500-3

    Article  PubMed  Google Scholar 

  30. Mayank R, Ranjan A, Moholkar VS (2013) Mathematical models of ABE fermentation: review and analysis. Crit Rev Biotechnol 33:419–447. https://doi.org/10.3109/07388551.2012.726208

    Article  PubMed  Google Scholar 

  31. Russmayer H, Marx H, Sauer M (2019) Microbial 2-butanol production with Lactobacillus diolivorans. Biotechnol Biofuels 12:262. https://doi.org/10.1186/s13068-019-1594-5

    Article  PubMed  PubMed Central  Google Scholar 

  32. Milanowski M, Monedeiro F, Złoch M, Ratiu IA, Pomastowski P, Ligor T, de Martinis BS, Buszewski B (2019) Profiling of VOCs released from different salivary bacteria treated with non-lethal concentrations of silver nitrate. Anal Biochem 578:36–44. https://doi.org/10.1016/j.ab.2019.05.007

    Article  PubMed  Google Scholar 

  33. Hazelwood LA, Daran J-M, van Maris AJA, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–2266. https://doi.org/10.1128/AEM.02625-07

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rojo F (2009) Degradation of alkanes by bacteria. Environ Microbiol 11:2477–2490. https://doi.org/10.1111/j.1462-2920.2009.01948.x

    Article  PubMed  Google Scholar 

  35. Kotani T, Kawashima Y, Yurimoto H, Kato N, Sakai Y (2006) Gene structure and regulation of alkane monooxygenases in propane-utilizing Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7. J Biosci Bioeng 102:184–192. https://doi.org/10.1263/jbb.102.184

    Article  PubMed  Google Scholar 

  36. Schulz H (1991) Beta oxidation of fatty acids. Biochim Biophys Acta - Lipids Lipid Metab 1081:109–120. https://doi.org/10.1016/0005-2760(91)90015-A

    Article  Google Scholar 

  37. Swinnen JV, Brusselmans K, Verhoeven G (2006) Increased lipogenesis in cancer cells: new players, novel targets. Curr Opin Clin Nutr Metab Care 9:358–365. https://doi.org/10.1097/01.mco.0000232894.28674.30

    Article  PubMed  Google Scholar 

  38. Zaidi N, Lupien L, Kuemmerle NB, Kinlaw WB, Swinnen JV, Smans K (2013) Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids. Prog Lipid Res 52:585–589. https://doi.org/10.1016/j.plipres.2013.08.005

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jelski W, Szmitkowski M (2008) Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in the cancer diseases. Clin Chim Acta 395:1–5. https://doi.org/10.1016/j.cca.2008.05.001

    Article  PubMed  Google Scholar 

  40. Chocolatewala N, Chaturvedi P, Desale R (2010) The role of bacteria in oral cancer. Indian J Med Paediatr Oncol 31:126–131. https://doi.org/10.4103/0971-5851.76195

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gaonkar P, Patankar S, Tripathi N, Sridharan G (2018) Oral bacterial flora and oral cancer: the possible link? J Oral Maxillofac Pathol 22:234–238. https://doi.org/10.4103/jomfp.JOMFP_89_16

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hooper SJ, Crean S-J, Fardy MJ, Lewis MAO, Spratt DA, Wade WG, Wilson MJ (2007) A molecular analysis of the bacteria present within oral squamous cell carcinoma. J Med Microbiol 56:1651–1659. https://doi.org/10.1099/jmm.0.46918-0

    Article  PubMed  Google Scholar 

  43. Elfaki I, Mir R, Almutairi FM, Abu Duhier FM (2018) Cytochrome P450: polymorphisms and roles in cancer, diabetes and atherosclerosis. Asian Pac J Cancer Prev 19:2057–2070. https://doi.org/10.22034/APJCP.2018.19.8.2057

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hernando-Rodriguez M, Rey-Barja N, Marichalar-Mendia X, Rodriguez-Tojo MJ, Acha-Sagredo A, Aguirre-Urizar JM (2012) Role of cytochrome P-450 genetic polymorphisms in oral carcinogenesis. J Oral Pathol Med 41:1–8. https://doi.org/10.1111/j.1600-0714.2011.01067.x

    Article  PubMed  Google Scholar 

  45. Miekisch W, Schubert JK, Noeldge-Schomburg GF (2004) Diagnostic potential of breath analysis—focus on volatile organic compounds. Clin Chim Acta 347:25–39. https://doi.org/10.1016/J.CCCN.2004.04.023

    Article  PubMed  Google Scholar 

  46. Wurzenberger M, Grosch W (1984) The formation of 1-octen-3-ol from the 10-hydroperoxide isomer of linoleic acid by a hydroperoxide lyase in mushrooms (Psalliota bispora). Biochim Biophys Acta - Lipids Lipid Metab 794:25–30. https://doi.org/10.1016/0005-2760(84)90293-5

    Article  Google Scholar 

  47. Cabre A, Girona J, Vallve J-C et al (2003) Cytotoxic effects of the lipid peroxidation product 2,4-decadienal in vascular smooth muscle cells. Atherosclerosis 169:245–250. https://doi.org/10.1016/S0021-9150(03)00196-5

    Article  PubMed  Google Scholar 

  48. Haze S, Gozu Y, Nakamura S, Kohno Y, Sawano K, Ohta H, Yamazaki K (2001) 2-Nonenal newly found in human body odor tends to increase with aging. J Invest Dermatol 116:520–524. https://doi.org/10.1046/j.0022-202x.2001.01287.x

    Article  PubMed  Google Scholar 

  49. Jayasena DD, Ahn DU, Nam KC, Jo C (2013) Flavour chemistry of chicken meat: a review. Asian Australas J Anim Sci 26:732–742. https://doi.org/10.5713/ajas.2012.12619

    Article  PubMed  PubMed Central  Google Scholar 

  50. Schaich KM, Shahidi F, Zhong Y, Eskin NAM (2013) Lipid oxidation. In: Eskin NA, Shahidi F (eds) Biochemistry of foods, 3rd ed. Elsevier, Cambridge, pp 419–478

    Chapter  Google Scholar 

  51. Park Y-S, Lek S (2016) Artificial neural networks. In: Jørgensen SE (ed) Developments in Environmental Modelling, 1 st. Elsevier B.V., pp 123–140

  52. Beck MW (2018) NeuralNetTools : visualization and analysis tools for neural networks. J Stat Softw 85:1–20. https://doi.org/10.18637/jss.v085.i11

    Article  PubMed  PubMed Central  Google Scholar 

  53. Waris G, Ahsan H (2006) Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 5:14. https://doi.org/10.1186/1477-3163-5-14

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pereira JAM, Porto-Figueira P, Taware R, Sukul P, Rapole S, Câmara JS (2020) Unravelling the potential of salivary volatile metabolites in oral diseases. A Review. Molecules 25:3098. https://doi.org/10.3390/molecules25133098

    Article  PubMed Central  Google Scholar 

  55. Taware R, Taunk K, Pereira JAM, Shirolkar A, Soneji D, Câmara JS, Nagarajaram HA, Rapole S (2018) Volatilomic insight of head and neck cancer via the effects observed on saliva metabolites. Sci Rep 8:17725. https://doi.org/10.1038/s41598-018-35854-x

    Article  PubMed  PubMed Central  Google Scholar 

  56. Shigeyama H, Wang T, Ichinose M, Ansai T, Lee SW (2019) Identification of volatile metabolites in human saliva from patients with oral squamous cell carcinoma via zeolite-based thin-film microextraction coupled with GC–MS. J Chromatogr B 1104:49–58. https://doi.org/10.1016/j.jchromb.2018.11.002

    Article  Google Scholar 

Download references

Funding

The work was supported by the Nicolaus Copernicus University. The author has obtained financial resources for conducting scientific research under the research grant for young researchers from abroad awarded by the Rector of the Nicolaus Copernicus University pursuant to Order no. MNZ/03/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogusław Buszewski.

Ethics declarations

Conflict of interest

Author Fernanda Monedeiro declares that she has no conflict of interest. Author Maciej Monedeiro-Milanowski declares that he has no conflict of interest. Author Hubert Zmysłowski declares that he has no conflict of interest. Author Bruno Spinosa De Martinis declares that he has no conflict of interest. Author Bogusław Buszewski declares that he has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by the Ethical Committee from the Nicolaus Copernicus University of Toruń (Decision Number KB 323/2017).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monedeiro, F., Monedeiro-Milanowski, M., Zmysłowski, H. et al. Evaluation of salivary VOC profile composition directed towards oral cancer and oral lesion assessment. Clin Oral Invest 25, 4415–4430 (2021). https://doi.org/10.1007/s00784-020-03754-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-020-03754-y

Keywords

Navigation