Skip to main content

Advertisement

Log in

Tailored 70S30C Bioactive glass induces severe inflammation as pulpotomy agent in primary teeth: an interim analysis of a randomised controlled trial

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

This study compared clinical, histologic, and inflammatory outcomes of Biodentine and Bioactive glass (70S30C-BAG) as pulpotomy agents in primary teeth.

Methods

A randomised, clinical trial was performed recruiting 70 children, 5–9 years old, having ≥ 1 tooth indicated for vital pulpotomy. Participants were randomised to Biodentine or 70S30C-BAG groups. Clinical evaluation was scheduled at 1, 3, 6, 9, and 12 months. Additional 16 teeth were extracted after 6 weeks to assess histologic and inflammatory response (IL-8/IL-10 ratio) using ELISA. Fisher exact, Mann Whitney U test, and t test were used to compare clinical, histologic outcomes and IL-8/IL-10 ratio.

Results

After 3 months, 10 teeth treated with Biodentine were clinically successful, while 9 teeth treated with 70S30C-BAG failed (P < 0.001) necessitating trial termination. Causes of failure were analysed by assessing the pH and ionic release of 70S30C-BAG. Biodentine-treated teeth showed minor inflammation, normal pulp, and hard tissue formation.70S30C-BAG-treated teeth showed severe inflammation, abscesses, root resorption without hard tissue formation. There was a significantly greater percent reduction of IL-8/IL-10 ratio in Biodentine than 70S30C-BAG (mean ± SD = 66.39 ± 18.56 and 40.66 ± 0.86, P = 0.02).

Conclusions

Biodentine showed favourable clinical, histologic, and anti-inflammatory outcomes, promoting pulp healing and regeneration. 70S30C-BAG resulted in pulp necrosis—through persistent inflammation—causing clinical failure.

Clinical relevance

Biodentine is a promising pulpotomy agent in primary teeth; it promoted healing and regeneration of the dentine-pulp complex. In its current form, 70S30C-BAG is not a suitable pulpotomy agent; it induced persistent inflammation, negating the pulp ability to heal and regenerate. TRN: NCT03786302, 12/19/2018.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stringhini JE, Dos Santos MGC, Oliveira LB, Mercadé M (2019) MTA and biodentine for primary teeth pulpotomy: a systematic review and meta-analysis of clinical trials. Clin Oral Investig 23:1967–1976. https://doi.org/10.1007/s00784-018-2616-6

    Article  Google Scholar 

  2. Arora V, Nikhil V, Namrata S, Arora P (2013) Bioactive dentin replacement. IOSR J Dent Med Sci 12:51–57. https://doi.org/10.9790/0853-1245157

    Article  Google Scholar 

  3. Laurent P, Camps J, About I (2012) BiodentineTM induces TGF-β1 release from human pulp cells and early dental pulp mineralization. Int Endod J 45:439–448. https://doi.org/10.1111/j.1365-2591.2011.01995.x

    Article  PubMed  Google Scholar 

  4. Cuadros-Fernández C, Lorente Rodríguez AI, Sáez-Martínez S, García-Binimelis J, About I, Mercadé M (2016) Short-term treatment outcome of pulpotomies in primary molars using mineral trioxide aggregate and Biodentine: a randomized clinical trial. Clin Oral Investig 20:1639–1645. https://doi.org/10.1007/s00784-015-1656-4

    Article  PubMed  Google Scholar 

  5. Rajasekharan S, Martens LC, Vandenbulcke J, Jacquet W, Bottenberg P, Cauwels RGEC (2017) Efficacy of three different pulpotomy agents in primary molars: a randomized control trial. Int Endod J 50:215–228. https://doi.org/10.1111/iej.12619

    Article  PubMed  Google Scholar 

  6. Grewal N, Salhan R, Kaur N, Patel H (2016) Comparative evaluation of calcium silicate-based dentin substitute (Biodentine ® ) and calcium hydroxide (pulpdent) in the formation of reactive dentin bridge in regenerative pulpotomy of vital primary teeth: triple blind, randomized clinical trial. Contemp Clin Dent 7:457. https://doi.org/10.4103/0976-237X.194116

    Article  PubMed  PubMed Central  Google Scholar 

  7. Galler KM, D’Souza RN, Hartgerink JD, Schmalz G (2011) Scaffolds for dental pulp tissue engineering. Adv Dent Res 23:333–339. https://doi.org/10.1177/0022034511405326

    Article  PubMed  Google Scholar 

  8. Jones JR, Ehrenfried LM, Hench LL (2006) Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 27:964–973. https://doi.org/10.1016/j.biomaterials.2005.07.017

    Article  PubMed  Google Scholar 

  9. Haghgoo R, Ahmadvand M (2016) Evaluation of pulpal response of deciduous teeth after direct pulp capping with bioactive glass and mineral trioxide aggregate. Contemp Clin Dent 7:332–335. https://doi.org/10.4103/0976-237x.188552

    Article  PubMed  PubMed Central  Google Scholar 

  10. Long Y, Liu S, Zhu L, Liang Q, Chen X, Dong Y (2017) Evaluation of pulp response to novel bioactive glass pulp capping materials. J Endod 43:1647–1650. https://doi.org/10.1016/j.joen.2017.03.011

    Article  PubMed  Google Scholar 

  11. Abdel Naby SM (2007) A comparative study of the pulpal response to mineral trioxide aggregate versus bioactive glass as pulpotomy agents in primary teeth. Dissertation, University of Alexandria

  12. Midha S, Kim TB, Van Den Bergh W, Lee PD, Jones JR, Mitchell CA (2013) Preconditioned 70S30C bioactive glass foams promote osteogenesis in vivo. Acta Biomater 9:9169–9182. https://doi.org/10.1016/j.actbio.2013.07.014

    Article  PubMed  Google Scholar 

  13. Wang S, Kowal TJ, Marei MK, Falk MM, Jain H (2013) Nanoporosity significantly enhances the biological performance of engineered glass tissue scaffolds. Tissue Eng A 19:1632–1640. https://doi.org/10.1089/ten.tea.2012.0585

    Article  Google Scholar 

  14. El Shazley N, Hamdy A, El-Eneen HA, El Backly RM, Saad MM, Essam W, Moussa H, El Tantawi M, Jain H, Marei MK (2016) Bioglass in alveolar bone regeneration in orthodontic patients. JDR Clin Transl Res 1:244–255. https://doi.org/10.1177/2380084416660672

    Article  Google Scholar 

  15. Wang S, Gao X, Gong W, Zhang Z, Chen X, Dong Y (2014) Odontogenic differentiation and dentin formation of dental pulp cells under nanobioactive glass induction. Acta Biomater 10:2792–2803. https://doi.org/10.1016/j.actbio.2014.02.013

    Article  PubMed  Google Scholar 

  16. Jun SK, Lee JH, Lee HH (2017) The biomineralization of a bioactive glass-incorporated light-curable pulp capping material using human dental pulp stem cells. Biomed Res Int 2017:1–9. https://doi.org/10.1155/2017/2495282

    Article  Google Scholar 

  17. Alsenan J, Chou L (2017) Effect of silicon and calcium on human dental pulp cell cultures. Int J Mater Sci Appl 6:290. https://doi.org/10.11648/j.ijmsa.20170606.14

    Article  Google Scholar 

  18. Lopez TCC, Diniz IMA, Ferreira LS, Marchi J, Borges R, de Cara SPHM, D’Almeida-Couto R, Marques MM (2017) Bioactive glass plus laser phototherapy as promise candidates for dentine hypersensitivity treatment. J Biomed Mater Res B Appl Biomater 105:107–116. https://doi.org/10.1002/jbm.b.33532

    Article  PubMed  Google Scholar 

  19. Wu C, Luo Y, Cuniberti G, Xiao Y, Gelinsky M (2011) Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability. Acta Biomater 7:2644–2650. https://doi.org/10.1016/j.actbio.2011.03.009

    Article  PubMed  Google Scholar 

  20. Goldberg M, Njeh A, Uzunoglu E (2015) Is pulp inflammation a prerequisite for pulp healing and regeneration? Mediat Inflamm 2015:347649–347611. https://doi.org/10.1155/2015/347649

    Article  Google Scholar 

  21. ElSalhy M, Azizieh F, Raghupathy R (2013) Cytokines as diagnostic markers of pulpal inflammation. Int Endod J 46:573–580. https://doi.org/10.1111/iej.12030

    Article  PubMed  Google Scholar 

  22. Magloire H, Romeas A, Melin M, Couble ML, Bleicher F, Farges JC (2001) Molecular regulation of odontoblast activity under dentin injury. Adv Dent Res 15:46–50. https://doi.org/10.1177/08959374010150011201

    Article  PubMed  Google Scholar 

  23. Salako N, Joseph B, Ritwik P, Salonen J, John P, Junaid TA (2003) Comparison of bioactive glass, mineral trioxide aggregate, ferric sulfate, and formocresol as pulpotomy agents in rat molar. Dent Traumatol 19:314–320. https://doi.org/10.1046/j.1600-9657.2003.00204.x

    Article  PubMed  Google Scholar 

  24. Haghgoo R, Naderi NJ (2007) Comparison of calcium hydroxide and bioactive glass after direct pulp capping in primary teeth. J Front Dent 4:155–159

    Google Scholar 

  25. Wang S, Falk MM, Rashad A, Saad MM, Marques AC, Almeida RM, Marei MK, Jain H (2011) Evaluation of 3D nano–macro porous bioactive glass scaffold for hard tissue engineering. J Mater Sci Mater Med 22:1195–1203. https://doi.org/10.1007/s10856-011-4297-4

    Article  PubMed  Google Scholar 

  26. Althunian TA, De Boer A, Groenwold RHH, Klungel OH (2017) Defining the noninferiority margin and analysing noninferiority: an overview. Br J Clin Pharmacol 83:1636–1642. https://doi.org/10.1111/bcp.13280

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kusum B, Rakesh K, Richa K (2015) Clinical and radiographical evaluation of mineral trioxide aggregate, biodentine and propolis as pulpotomy medicaments in primary teeth. Restor Dent Endod 40:276–285. https://doi.org/10.5395/rde.2015.40.4.276

    Article  PubMed  PubMed Central  Google Scholar 

  28. El Meligy OA, Allazzam S, Alamoudi NM (2016) Comparison between biodentine and formocresol for pulpotomy of primary teeth: a randomized clinical trial. Quintessence Int (Berl) 47:571–580. https://doi.org/10.3290/j.qi.a36095

    Article  Google Scholar 

  29. American Academy of Pediatric Dentistry (2014) Pulp therapy for primary and immature permanent teeth. Reference Manual 39:325–333

    Google Scholar 

  30. Agamy HA, Bakry NS, Mounir MMF, Avery DR (2004) Comparison of mineral trioxide aggregate and formocresol as pulp-capping agents in pulpotomized primary teeth. Pediatr Dent 26:302–309

    PubMed  Google Scholar 

  31. Saghaei M (2004) Random allocation software for parallel group randomized trials. BMC Med Res Methodol 4:26. https://doi.org/10.1186/1471-2288-4-26

    Article  PubMed  PubMed Central  Google Scholar 

  32. Huth KC, Paschos E, Hajek-Al-Khatar N, Hollweck R, Crispin A, Hickel R, Folwaczny M (2005) Effectiveness of 4 pulpotomy techniques—randomized controlled trial. J Dent Res 84:1144–1148. https://doi.org/10.1177/154405910508401210

    Article  PubMed  Google Scholar 

  33. McHugh ML (2012) Interrater reliability: the kappa statistic. Biochem Med. https://doi.org/10.11613/bm.2012.031

  34. Schulz KF, Altman DG, Moher D (2010) CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMC Med 8:18. https://doi.org/10.1186/1741-7015-8-18

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shayegan A, Jurysta C, Atash R, Petein M, Vanden AA (2012) Biodentine used as a pulp-capping agent in primary pig teeth. Pediatr Dent 34:202E–208E

    Google Scholar 

  36. Ozdemir Y, Kutukculer N, Topaloglu-Ak A, Kose T, Eronat C (2015) Comparative evaluation of pro-inflammatory cytokine levels in pulpotomized primary molars. J Oral Sci 57:145–150. https://doi.org/10.2334/josnusd.57.145

    Article  PubMed  Google Scholar 

  37. Pezelj-Ribaric S, Anic I, Brekalo I, Miletic I, Hasan M, Simunovic-Soskic M (2002) Detection of tumor necrosis factor α in Normal and inflamed human dental pulps. Arch Med Res 33:482–484. https://doi.org/10.1016/S0188-4409(02)00396-X

    Article  PubMed  Google Scholar 

  38. Gholami S, Labbaf S, Houreh AB, Ting HK, Jones JR, Esfahani MHN (2017) Long term effects of bioactive glass particulates on dental pulp stem cells in vitro. Biomed Glas 3:96–103. https://doi.org/10.1515/bglass-2017-0009

    Article  Google Scholar 

  39. Uzunoğlu E, Yılmaz Z, Evren Ülker A, Kalaycı S, Karahan S (2011) Determination of pH and calcium ion realease provided by different calcium hyroxide pastes. Clin Dent Res 35:38–42

    Google Scholar 

  40. Fouad WA, Youssef R, Yossef R (2013) Clinical and radiographic assessment of vital pulpotomy in primary molars using mineral trioxide aggregate and a novel bioactive cement. Egypt Dent J 59:1–7

    Google Scholar 

  41. Kim J, Song YS, Min KS, Kim SH, Koh JT, Lee BN, Chang HS, Hwang IN, Oh WM, Hwang YC (2016) Evaluation of reparative dentin formation of ProRoot MTA, biodentine and BioAggregate using micro-CT and immunohistochemistry. Restor Dent Endod 41:29–36. https://doi.org/10.5395/rde.2016.41.1.29

    Article  PubMed  PubMed Central  Google Scholar 

  42. Coll JA, Seale NS, Vargas K, Marghalani AA, Al Shamali S, Graham L (2017) Primary tooth vital pulp therapy: a systematic review and meta-analysis. Pediatr Dent 39:16–123

    PubMed  Google Scholar 

  43. Sepulveda P, Jones JR, Hench LL (2001) Characterization of melt-derived 45S5 and sol-gel-derived 58S bioactive glasses. J Biomed Mater Res 58:734–740. https://doi.org/10.1002/jbm.10026

    Article  PubMed  Google Scholar 

  44. Sepulveda P, Jones JR, Hench LL (2002) In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. J Biomed Mater Res 61:301–311. https://doi.org/10.1002/jbm.10207

    Article  PubMed  Google Scholar 

  45. Ciraldo FE, Boccardi E, Melli V, Westhauser F, Boccaccini AR (2018) Tackling bioactive glass excessive in vitro bioreactivity: preconditioning approaches for cell culture tests. Acta Biomater 75:3–10. https://doi.org/10.1016/j.actbio.2018.05.019

    Article  PubMed  Google Scholar 

  46. Cui CY, Wang SN, Ren HH, Li AL, Qiu D, Gan YH, Dong YM (2017) Regeneration of dental-pulp complex-like tissue using phytic acid derived bioactive glasses. RSC Adv 7:22063–22070. https://doi.org/10.1039/c7ra01480e

    Article  Google Scholar 

  47. Ting H, Page SJ, Poologasundarampillai G, Chen S, Yu B, Hanna JV, Jones JR (2017) Phosphate content affects structure and bioactivity of sol-gel silicate bioactive glasses. Int J Appl Glas Sci 8:372–382. https://doi.org/10.1111/ijag.12322

    Article  Google Scholar 

  48. Houreh AB, Labbaf S, Ting HK, Ejeian F, Jones JR, Esfahani MHN (2017) Influence of calcium and phosphorus release from bioactive glasses on viability and differentiation of dental pulp stem cells. J Mater Sci 52:8928–8941. https://doi.org/10.1007/s10853-017-0946-4

    Article  Google Scholar 

  49. Gong W, Huang Z, Dong Y, Gan Y, Li S, Gao X, Chen X (2014) Ionic extraction of a novel nano-sized bioactive glass enhances differentiation and mineralization of human dental pulp cells. J Endod 40:83–88. https://doi.org/10.1016/j.joen.2013.08.018

    Article  PubMed  Google Scholar 

  50. Zhou HM, Shen Y, Wang ZJ, Li L, Zheng YF, Häkkinen L, Haapasalo M (2013) In vitro cytotoxicity evaluation of a novel root repair material. J Endod 39:478–483. https://doi.org/10.1016/j.joen.2012.11.026

    Article  PubMed  Google Scholar 

  51. Hassan ST, Alothmani OS, Yousef MK (2015) Biodentine and mineral trioxide aggregate: an analysis of solubility, pH changes and leaching elements. Life Sci J. https://doi.org/10.4103/JCD.JCD_45_17

  52. Nakamura Y, Hammarström L, Lundberg E, Ekdahl H, Matsumoto K, Gestrelius S, Lyngstadaas SP (2001) Enamel matrix derivative promotes reparative processes in the dental pulp. Adv Dent Res 15:105–107. https://doi.org/10.1177/08959374010150010201

    Article  PubMed  Google Scholar 

  53. Ravi GR, Subramanyam RV (2012) Calcium hydroxide-induced resorption of deciduous teeth: a possible explanation. Dent Hypotheses 3:90. https://doi.org/10.4103/2155-8213.103910

    Article  Google Scholar 

  54. Yildirim S, Yapar M, Sermet U, Sener K, Kubar A (2008) The role of dental pulp cells in resorption of deciduous teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105:113–120. https://doi.org/10.1016/j.tripleo.2007.06.026

    Article  PubMed  Google Scholar 

  55. Santos RL, Moura MFL, Carvalho FG, Guênes GMT, Alves PM, Pithon MM (2014) Histological analysis of biocompatibility of ionomer cements with an acid-base reaction. Braz Oral Res 28:1–7. https://doi.org/10.1590/S1806-83242014.50000003

    Article  Google Scholar 

  56. Giraud T, Jeanneau C, Rombouts C, Bakhtiar H, Laurent P, About I (2019) Pulp capping materials modulate the balance between inflammation and regeneration. Dent Mater 35:24–35. https://doi.org/10.1016/j.dental.2018.09.008

    Article  PubMed  Google Scholar 

  57. Silva ACO, Faria MR, Fontes A, Campos MS, Cavalcanti BN (2009) Interleukin-1 beta and interleukin-8 in healthy and inflamed dental pulps. J Appl Oral Sci 17:527–532. https://doi.org/10.1590/S1678-77572009000500031

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hahn C-L, Best AM, Tew JG (2000) Cytokine induction by Streptococcus mutans and pulpal pathogenesis. Infect Immun 68:6785–6789. https://doi.org/10.1128/IAI.68.12.6785-6789.2000

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mazhari F, Shabzendedar M, Mohtasham N, Nik E, Noorollahian H (2016) Success evaluation of pulpotomy in primary molars with enamel matrix derivative: a pilot study. J Dent Mater Tech 5:94–98. https://doi.org/10.22038/jdmt.2016.6620

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Dr. Noha ElShazly, Tissue Engineering Laboratory, Faculty of Dentistry, Alexandria University, Alexandria, Egypt for preparing the material used in this study, Dr. Nevien Mahmoud, Assistant Professor of Biochemistry, Pharos University in Alexandria, Egypt for performing the ELISA analysis, and Dr. Osama Abd Ellatif, Associate Professor of Physical Chemistry, Pharos University in Alexandria, Egypt for his guidance through the laboratory part of the study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation and study design: (Yasmine Elhamouly, Rania M El Backly, Maha El Tantawi, and Karin ML Dowidar); Performance of clinical and laboratory procedures, follow-up, data collection, writing, original draft preparation, editing: (Yasmine Elhamouly); Supervision of the clinical procedures: (Rania M El Backly, Dalia M Talaat, and Karin ML Dowidar); Randomisation and concealment: (Dalia M Talaat and Karin ML Dowidar); Follow-up, data analysis and interpretation: (Yasmine Elhamouly, Rania M El Backly, Dalia M Talaat, and Karin ML Dowidar); Supervising acquisition and retrieval of ELISA samples, analysis and interpretation of the laboratory data: (Rania M El Backly); Supervising processing of histological samples, analysis, interpretation, and acquisition of histological data: (Samia S Omar); Performing the statistical analysis, interim analysis, termination procedures and supervised registration of the clinical trial: (Maha El Tantawi); Reviewing: (Rania M El Backly, Samia S Omar, Dalia M Talaat, Maha El Tantawi and Karin ML Dowidar). All authors contributed to drafting of the manuscript, critical revision, and approval of the final manuscript.

Corresponding author

Correspondence to Yasmine Elhamouly.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by the Research Ethics Committee, Faculty of Dentistry, Alexandria University, Egypt, (IRB 00010556)-(IORG 0008839).

Consent to participate

Informed consent was obtained from parents of all individual participants included in the study.

Consent to publish

Informed consent was obtained from parents of all individual participants regarding publishing any of their data.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elhamouly, Y., El Backly, R.M., Talaat, D.M. et al. Tailored 70S30C Bioactive glass induces severe inflammation as pulpotomy agent in primary teeth: an interim analysis of a randomised controlled trial. Clin Oral Invest 25, 3775–3787 (2021). https://doi.org/10.1007/s00784-020-03707-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-020-03707-5

Keywords

Navigation