Skip to main content

Advertisement

Log in

Compressive force strengthened the pro-inflammatory effect of zoledronic acid on il-1ß stimulated human periodontal fibroblasts

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The number of patients in dentistry taking bisphosphonates (BP) increases every year. There are only little data about the influence of biomechanical stress due to orthodontic treatment and periodontal inflammation in BP patients. This study focused on the effects of the induced inflammation by IL-1ß in compressed human periodontal ligament fibroblasts (HPdLF) exposed to the nitrogen-containing BP zoledronate in vitro.

Materials and methods

HPdLF were incubated with 5 μmol/l zoledronate and 10 ng/ml IL-1ß for 48 h. In the last 3 h, cells were exposed to a compressive, centrifugal force of 34.9 g/cm2. Cell viability was analyzed directly after the compressive force by MTT assay. Gene expression of COX-2 and IL-6 was investigated using quantitative qRT-PCR. PGE-2 and IL-6 protein secretion were measured via ELISA.

Results

The cell viability of HPdLF was not affected. Without inflammatory pre-stimulation, COX-2 expression was increased by compression and zoledronate. IL-6 expression was increased under compression. On secretion level, the combination of compression and zoledronate induced a slightly increase of IL-6 secretion. In contrast, inflammatory pre-stimulation strengthened the compressive upregulation of COX-2, as well as induced a higher PGE-2 secretion. Further addition of zoledronate to pre-stimulated cells additionally strengthened the compression-induced upregulation of COX-2 and IL-6 expression as well as protein secretion compared to all other groups.

Conclusions

Biomechanical stress might trigger a pro-inflammatory potential of BP further enhanced in the presence of an inflammatory pre-stimulation.

Clinical relevance

To prevent excessive host inflammatory responses, occlusal overloading and mechanical stress due to orthodontic treatment should be avoided in BP patients with untreated periodontitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Van Poznak CH (2002) The use of bisphosphonates in patients with breast cancer. Cancer Control 9:480–489. https://doi.org/10.1177/107327480200900605

    Article  PubMed  Google Scholar 

  2. Kerschan-Schindl K, Haschka J, Obermayer-Pietsch B, Gasser RW, Dimai HP, Fahrleitner-Pammer A, Dobnig H, Roschger P, Preisinger E, Klaushofer K, Resch H, Pietschmann P (2013) How long should women with postmenopausal osteoporosis be treated with a bisphosphonate? Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme 45:621-8. https://doi.org/10.1055/s-0033-1345207

  3. Wysowski DK, Greene P (2013) Trends in osteoporosis treatment with oral and intravenous bisphosphonates in the United States, 2002-2012. Bone 57:423–428. https://doi.org/10.1016/j.bone.2013.09.008

    Article  PubMed  Google Scholar 

  4. Rogers MJ (2003) New insights into the molecular mechanisms of action of bisphosphonates. Curr Pharm Des 9:2643–2658

    Article  PubMed  Google Scholar 

  5. Herrera I, Kam Y, Whittaker TJ, Champion M, Ajlan RS (2019) Bisphosphonate-induced orbital inflammation in a patient on chronic immunosuppressive therapy. BMC Ophthalmol 19:51. https://doi.org/10.1186/s12886-019-1063-8

    Article  PubMed  PubMed Central  Google Scholar 

  6. Marx RE (2003) Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofac Surg 61:1115–1117

    Article  PubMed  Google Scholar 

  7. Pozzi S, Vallet S, Mukherjee S, Cirstea D, Vaghela N, Santo L, Rosen E, Ikeda H, Okawa Y, Kiziltepe T, Schoonmaker J, Xie W, Hideshima T, Weller E, Bouxsein ML, Munshi NC, Anderson KC, Raje N (2009) High-dose zoledronic acid impacts bone remodeling with effects on osteoblastic lineage and bone mechanical properties. Clin Cancer Res 15:5829–5839. https://doi.org/10.1158/1078-0432.ccr-09-0426

    Article  PubMed  Google Scholar 

  8. Diel IJ, Bergner R, Grotz KA (2007) Adverse effects of bisphosphonates: current issues. J Support Oncol 5:475–482

    PubMed  Google Scholar 

  9. Nancollas GH, Tang R, Phipps RJ, Henneman Z, Gulde S, Wu W, Mangood A, Russell RG, Ebetino FH (2006) Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite. Bone 38:617–627. https://doi.org/10.1016/j.bone.2005.05.003

    Article  PubMed  Google Scholar 

  10. Dhillon S (2016) Zoledronic acid (reclast((R)), aclasta((R))): a review in osteoporosis. Drugs 76:1683–1697. https://doi.org/10.1007/s40265-016-0662-4

    Article  PubMed  Google Scholar 

  11. Walter C, Klein MO, Pabst A, Al-Nawas B, Duschner H, Ziebart T (2010) Influence of bisphosphonates on endothelial cells, fibroblasts, and osteogenic cells. Clin Oral Investig 14:35–41. https://doi.org/10.1007/s00784-009-0266-4

    Article  PubMed  Google Scholar 

  12. Jung J, Park JS, Righesso L, Pabst AM, Al-Nawas B, Kwon YD, Walter C (2018) Effects of an oral bisphosphonate and three intravenous bisphosphonates on several cell types in vitro. Clin Oral Investig 22:2527–2534. https://doi.org/10.1007/s00784-018-2349-6

    Article  PubMed  Google Scholar 

  13. Pabst AM, Ziebart T, Koch FP, Taylor KY, Al-Nawas B, Walter C (2012) The influence of bisphosphonates on viability, migration, and apoptosis of human oral keratinocytes--in vitro study. Clin Oral Investig 16:87–93. https://doi.org/10.1007/s00784-010-0507-6

    Article  PubMed  Google Scholar 

  14. Pabst AM, Kruger M, Blatt S, Ziebart T, Rahimi-Nedjat R, Goetze E, Walter C (2016) Angiogenesis in the development of medication-related osteonecrosis of the jaws: an overview. Dent J 5:5. https://doi.org/10.3390/dj5010002

    Article  Google Scholar 

  15. Meikle MC (2006) The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur J Orthod 28:221–240. https://doi.org/10.1093/ejo/cjl001

    Article  PubMed  Google Scholar 

  16. Kirschneck C, Fanghanel J, Wahlmann U, Wolf M, Roldan JC, Proff P (2017) Interactive effects of periodontitis and orthodontic tooth movement on dental root resorption, tooth movement velocity and alveolar bone loss in a rat model. Ann Anat 210:32–43. https://doi.org/10.1016/j.aanat.2016.10.004

    Article  PubMed  Google Scholar 

  17. Kirschneck C, Maurer M, Wolf M, Reicheneder C, Proff P (2017) Regular nicotine intake increased tooth movement velocity, osteoclastogenesis and orthodontically induced dental root resorptions in a rat model. Int J Oral Sci 9:174–184. https://doi.org/10.1038/ijos.2017.34

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kirschneck C, Meier M, Bauer K, Proff P, Fanghanel J (2017) Meloxicam medication reduces orthodontically induced dental root resorption and tooth movement velocity: a combined in vivo and in vitro study of dental-periodontal cells and tissue. Cell Tissue Res 368:61–78. https://doi.org/10.1007/s00441-016-2553-0

    Article  PubMed  Google Scholar 

  19. Saito M, Saito S, Ngan PW, Shanfeld J, Davidovitch Z (1991) Interleukin 1 beta and prostaglandin E are involved in the response of periodontal cells to mechanical stress in vivo and in vitro. Am J Orthod Dentofac Orthop 99:226–240. https://doi.org/10.1016/0889-5406(91)70005-H

    Article  Google Scholar 

  20. Suzuki Y, Nishiyama T, Hasuda K, Fujishiro T, Niikura T, Hayashi S, Hashimoto S, Kurosaka M (2007) Effect of etidronate on COX-2 expression and PGE(2) production in macrophage-like RAW 264.7 cells stimulated by titanium particles. J Orthop Sci 12:568–577. https://doi.org/10.1007/s00776-007-1180-8

    Article  PubMed  Google Scholar 

  21. Liu L, Igarashi K, Kanzaki H, Chiba M, Shinoda H, Mitani H (2006) Clodronate inhibits PGE(2) production in compressed periodontal ligament cells. J Dent Res 85:757–760. https://doi.org/10.1177/154405910608500813

    Article  PubMed  Google Scholar 

  22. Kanasi E, Ayilavarapu S, Jones J (2016) The aging population: demographics and the biology of aging. Periodontology 2000 72:13–18. https://doi.org/10.1111/prd.12126

    Article  PubMed  Google Scholar 

  23. Wong L, Ryan FS, Christensen LR, Cunningham SJ (2018) Factors influencing satisfaction with the process of orthodontic treatment in adult patients. Am J Orthodon Dentofacial Orthop 153:362–370. https://doi.org/10.1016/j.ajodo.2017.07.017

    Article  Google Scholar 

  24. Proff P, Reicheneder C, Faltermeier A, Kubein-Meesenburg D, Romer P (2014) Effects of mechanical and bacterial stressors on cytokine and growth-factor expression in periodontal ligament cells. J Orofac Orthop 75:191–202. https://doi.org/10.1007/s00056-014-0212-1

    Article  PubMed  Google Scholar 

  25. Walter C, Pabst A, Ziebart T, Klein M, Al-Nawas B (2011) Bisphosphonates affect migration ability and cell viability of HUVEC, fibroblasts and osteoblasts in vitro. Oral Dis 17:194–199. https://doi.org/10.1111/j.1601-0825.2010.01720.x

    Article  PubMed  Google Scholar 

  26. Chen T, Berenson J, Vescio R, Swift R, Gilchick A, Goodin S, LoRusso P, Ma P, Ravera C, Deckert F, Schran H, Seaman J, Skerjanec A (2002) Pharmacokinetics and pharmacodynamics of zoledronic acid in cancer patients with bone metastases. J Clin Pharmacol 42:1228–1236

    Article  PubMed  Google Scholar 

  27. Jacobs C, Schramm S, Dirks I, Walter C, Pabst A, Meila D, Wehrbein H (2018) Mechanical loading increases pro-inflammatory effects of nitrogen-containing bisphosphonate in human periodontal fibroblasts. Clin Oral Investig 22:901–907. https://doi.org/10.1007/s00784-017-2168-1

    Article  PubMed  Google Scholar 

  28. Nokhbehsaim M, Winter J, Rath B, Jager A, Jepsen S, Deschner J (2011) Effects of enamel matrix derivative on periodontal wound healing in an inflammatory environment in vitro. J Clin Periodontol 38:479–490. https://doi.org/10.1111/j.1600-051X.2010.01696.x

    Article  PubMed  Google Scholar 

  29. Long P, Liu F, Piesco NP, Kapur R, Agarwal S (2002) Signaling by mechanical strain involves transcriptional regulation of proinflammatory genes in human periodontal ligament cells in vitro. Bone 30:547–552

    Article  PubMed  PubMed Central  Google Scholar 

  30. Diercke K, Zingler S, Kohl A, Lux CJ, Erber R (2014) Gene expression profile of compressed primary human cementoblasts before and after IL-1beta stimulation. Clin Oral Investig 18:1925–1939. https://doi.org/10.1007/s00784-013-1167-0

    Article  PubMed  Google Scholar 

  31. Redlich M, Roos H, Reichenberg E, Zaks B, Grosskop A, Bar Kana I, Pitaru S, Palmon A (2004) The effect of centrifugal force on mRNA levels of collagenase, collagen type-I, tissue inhibitors of metalloproteinases and beta-actin in cultured human periodontal ligament fibroblasts. J Periodontal Res 39:27–32

    Article  PubMed  Google Scholar 

  32. Symmank J, Zimmermann S, Goldschmitt J, Schiegnitz E, Wolf M, Wehrbein H, Jacobs C (2019) Mechanically-induced GDF15 secretion by periodontal ligament fibroblasts regulates osteogenic transcription. Sci Rep 9:11516. https://doi.org/10.1038/s41598-019-47639-x

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kirschneck C, Batschkus S, Proff P, Kostler J, Spanier G, Schroder A (2017) Valid gene expression normalization by RT-qPCR in studies on hPDL fibroblasts with focus on orthodontic tooth movement and periodontitis. Sci Rep 7:14751. https://doi.org/10.1038/s41598-017-15281-0

    Article  PubMed  PubMed Central  Google Scholar 

  34. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  PubMed  Google Scholar 

  35. Gedeon T, Bokes P (2012) Delayed protein synthesis reduces the correlation between mRNA and protein fluctuations. Biophys J 103:377–385. https://doi.org/10.1016/j.bpj.2012.06.025

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu Y, Beyer A, Aebersold R (2016) On the dependency of cellular protein levels on mRNA abundance. Cell 165:535–550. https://doi.org/10.1016/j.cell.2016.03.014

    Article  PubMed  Google Scholar 

  37. Nakao K, Goto T, Gunjigake KK, Konoo T, Kobayashi S, Yamaguchi K (2007) Intermittent force induces high RANKL expression in human periodontal ligament cells. J Dent Res 86:623–628

    Article  PubMed  Google Scholar 

  38. Li Y, Zheng W, Liu JS, Wang J, Yang P, Li ML, Zhao ZH (2011) Expression of osteoclastogenesis inducers in a tissue model of periodontal ligament under compression. J Dent Res 90:115–120. https://doi.org/10.1177/0022034510385237

    Article  PubMed  Google Scholar 

  39. Jacobs C, Walter C, Ziebart T, Dirks I, Schramm S, Grimm S, Krieger E, Wehrbein H (2014) Mechanical loading influences the effects of bisphosphonates on human periodontal ligament fibroblasts. Clin Oral Investig 19:699–708. https://doi.org/10.1007/s00784-014-1284-4

    Article  PubMed  Google Scholar 

  40. Lefebvre DR, Mandeville JT, Yonekawa Y, Arroyo JG, Torun N and Freitag SK (2014) A case series and review of bisphosphonate-associated orbital inflammation. Ocul Immunol Inflamm:1-6. https://doi.org/10.3109/09273948.2014.942747

  41. Lesclous P, Abi Najm S, Carrel JP, Baroukh B, Lombardi T, Willi JP, Rizzoli R, Saffar JL, Samson J (2009) Bisphosphonate-associated osteonecrosis of the jaw: a key role of inflammation? Bone 45:843–852. https://doi.org/10.1016/j.bone.2009.07.011

    Article  PubMed  Google Scholar 

  42. Wang IT, Chou SC, Lin YC (2014) Zoledronic acid induces apoptosis and autophagy in cervical cancer cells. Tumour Biol 35:11913–11920. https://doi.org/10.1007/s13277-014-2460-5

    Article  PubMed  Google Scholar 

  43. Scheller EL, Hankenson KD, Reuben JS, Krebsbach PH (2011) Zoledronic acid inhibits macrophage SOCS3 expression and enhances cytokine production. J Cell Biochem 112:3364–3372. https://doi.org/10.1002/jcb.23267

    Article  PubMed  PubMed Central  Google Scholar 

  44. Alhashimi N, Frithiof L, Brudvik P, Bakhiet M (2001) Orthodontic tooth movement and de novo synthesis of proinflammatory cytokines. Am J Orthod Dentofac Orthop 119:307–312. https://doi.org/10.1067/mod.2001.110809

    Article  Google Scholar 

  45. Shi J, Baumert U, Folwaczny M, Wichelhaus A (2019) Influence of static forces on the expression of selected parameters of inflammation in periodontal ligament cells and alveolar bone cells in a co-culture in vitro model. Clin Oral Investig 23:2617–2628. https://doi.org/10.1007/s00784-018-2697-2

    Article  PubMed  Google Scholar 

  46. Kirschneck C, Kuchler EC, Wolf M, Spanier G, Proff P, Schroder A (2019) Effects of the highly COX-2-selective analgesic NSAID Etoricoxib on human periodontal ligament fibroblasts during compressive orthodontic mechanical strain. Mediat Inflamm 2019:2514956–2514914. https://doi.org/10.1155/2019/2514956

    Article  Google Scholar 

  47. Kirschneck C, Proff P, Maurer M, Reicheneder C, Romer P (2015) Orthodontic forces add to nicotine-induced loss of periodontal bone: an in vivo and in vitro study. Journal of orofacial orthopedics = Fortschritte der Kieferorthopadie : Organ/official journal Deutsche Gesellschaft fur Kieferorthopadie. https://doi.org/10.1007/s00056-015-0283-7

  48. Chumbley AB, Tuncay OC (1986) The effect of indomethacin (an aspirin-like drug) on the rate of orthodontic tooth movement. Am J Orthod 89:312–314

    Article  PubMed  Google Scholar 

  49. Kanzaki H, Chiba M, Shimizu Y, Mitani H (2002) Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappaB ligand up-regulation via prostaglandin E2 synthesis. J Bone Miner Res 17:210–220. https://doi.org/10.1359/jbmr.2002.17.2.210

    Article  PubMed  Google Scholar 

  50. Ebersole JL, Steffen MJ, Thomas MV, Al-Sabbagh M (2014) Smoking-related cotinine levels and host responses in chronic periodontitis. J Periodontal Res 49:642–651. https://doi.org/10.1111/jre.12146

    Article  PubMed  Google Scholar 

  51. Varella AM, Revankar AV, Patil AK (2018) Low-level laser therapy increases interleukin-1beta in gingival crevicular fluid and enhances the rate of orthodontic tooth movement. Am J Orthod Dentofac Orthop 154:535–544 e5. https://doi.org/10.1016/j.ajodo.2018.01.012

    Article  Google Scholar 

  52. Schroder A, Bauer K, Spanier G, Proff P, Wolf M, Kirschneck C (2018) Expression kinetics of human periodontal ligament fibroblasts in the early phases of orthodontic tooth movement. J Orofac Orthop 79:337–351. https://doi.org/10.1007/s00056-018-0145-1

    Article  PubMed  Google Scholar 

  53. Grimm S, Wolff E, Walter C, Pabst AM, Mundethu A, Jacobs C, Wehrbein H, Jacobs C (2020) Influence of clodronate and compressive force on IL-1ss-stimulated human periodontal ligament fibroblasts. Clin Oral Investig 24:343–350. https://doi.org/10.1007/s00784-019-02930-z

    Article  PubMed  Google Scholar 

  54. Kikuta J, Yamaguchi M, Shimizu M, Yoshino T, Kasai K (2015) Notch signaling induces root resorption via RANKL and IL-6 from hPDL cells. J Dent Res 94:140–147. https://doi.org/10.1177/0022034514555364

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks to Jutta Bühler and Dr. Jutta Goldschmitt for excellent technical assistance. Special thanks to Andrea Goetz for language help and proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Grimm.

Ethics declarations

Conflict of interest

Author Sarah Grimm declares she has no conflict of interest. Author Ambili Mundethu declares she has no conflict of interest. Author Judit Symmank declares she has no conflict of interest. Author Christoph-Ludwig Hennig declares he has no conflict of interest. Author Christian Walter declares he has no conflict of interest. Author Elisabeth Reichardt declares she has no conflict of interest. Author Heiner Wehrbein declares he has no conflict of interest. Author Collin Jacobs declares he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants of animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grimm, S., Mundethu, A., Symmank, J. et al. Compressive force strengthened the pro-inflammatory effect of zoledronic acid on il-1ß stimulated human periodontal fibroblasts. Clin Oral Invest 25, 3453–3461 (2021). https://doi.org/10.1007/s00784-020-03667-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-020-03667-w

Keywords

Navigation