Ray HA, Trope M (1995) Periapical status of endodontically treated teeth in relation to the technical quality of the root canal filling and the coronal restoration. Int Endod J 28:12–18
Article
Google Scholar
Robbins JW (2002) Restoration of the endodontically treated tooth. Dent Clin N Am 46:367–384
Article
Google Scholar
Sedrez-Porto JA, da Rosa WLDO, da Silva AF, Münchow EA, Pereira-Cenci T (2016) Endocrown restorations: a systematic review and meta-analysis. J Dent 52:8–14. https://doi.org/10.1016/j.jdent.2016.07.005
Article
PubMed
Google Scholar
Pissis P (1995) Fabrication of a metal-free ceramic restoration utilizing the monobloc technique. Pract Periodontics Aesthet Dent 7:83–94
PubMed
Google Scholar
Bindl A, Mormann WH (1999) Clinical evaluation of adhesively placed Cerec endo-crowns after 2 years-preliminary results. J Adhes Dent 1:255–266
PubMed
Google Scholar
Gresnigt MM, Özcan M, van den Houten ML, Schipper L, Cune MS (2016) Fracture strength, failure type and Weibull characteristics of lithium disilicate and multiphase resin composite endocrowns under axial and lateral forces. Dent Mater 32:607–614. https://doi.org/10.1016/j.dental.2016.01.004
Article
PubMed
Google Scholar
Rocca GT, Sedlakova P, Saratti CM, Sedlacek R, Gregor L, Rizcalla N, Feilzer AJ, Krejci I (2016) Fatigue behavior of resin-modified monolithic CAD–CAM RNC crowns and endocrowns. Dent Mater 32:338–350. https://doi.org/10.1016/j.dental.2016.09.024
Article
Google Scholar
Liu PR (2005) A panorama of dental CAD/CAM restorative systems. Compend 26:507–513
Google Scholar
Zhi L, Bortolotto T, Krejci I (2016) Comparative in vitro wear resistance of CAD/CAM composite resin and ceramic materials. J Prosthet Dent 115:199–202. https://doi.org/10.1016/j.prosdent.2015.07.011
Article
PubMed
Google Scholar
Altier M, Erol F, Yildirim G, Dalkilic EE (2018) Fracture resistance and failure modes of lithium disilicate or composite endocrowns. Niger J Clin Pract 21:821–826
PubMed
Google Scholar
Spitznagel FA, Horvath SD, Guess PC, Blatz MB (2014) Resin bond to indirect composite and new ceramic/polymer materials: a review of the literature. J Esthet Restor Dent 26:382–393. https://doi.org/10.1111/jerd.12100
Article
PubMed
Google Scholar
Awada A, Nathanson D (2015) Mechanical properties of resin-ceramic CAD/CAM restorative materials. J Prosthet Dent 114:587–593. https://doi.org/10.1016/j.prosdent.2015.04.016
Article
PubMed
Google Scholar
Stawarczyk B, Liebermann A, Eichberger M, Güth JF (2016) Evaluation of mechanical and optical behavior of current esthetic dental restorative CAD/CAM composites. J Mech Behav Biomed Mater 55:1–11. https://doi.org/10.1016/j.jmbbm.2015.10.004
Article
Google Scholar
Hampe R, Theelke B, Lümkemann N, Eichberger M, Stawarczyk B (2019) Fracture toughness analysis of ceramic and resin composite CAD/CAM material. Oper Dent 44:190–201. https://doi.org/10.2341/18-161-l
Article
Google Scholar
Matzinger M, Hahnel S, Preis V, Rosentritt M (2018) Polishing effects and wear performance of chairside CAD/CAM materials. Clin Oral Investig 23:725–737. https://doi.org/10.1007/s00784-018-2473-3
Article
PubMed
Google Scholar
Belleflamme MM, Geerts SO, Louwette MM, Grenade CF, Vanheusden AJ, Mainjot AK (2017) No post-no core approach to restore severely damaged posterior teeth: an up to 10-year retrospective study of documented endocrown cases. J Dent 63:1–7. https://doi.org/10.1016/j.jdent.2017.04.009
Article
PubMed
Google Scholar
Dejak B, Młotkowski A (2018) Strength comparison of anterior teeth restored with ceramic endocrowns vs custom-made post and cores. J Prosthodont Res 62:171–176. https://doi.org/10.1016/j.jpor.2017.08.005
Article
PubMed
Google Scholar
Kanat Ertürk B, Saridağ S, Köseler E, Helvacioğlu Yiğit D, Avcu E, Yildiran Avcu Y (2018) Fracture strengths of endocrown restorations fabricated with different preparation depths and CAD/CAM materials. Dent Mater J 37:256–265. https://doi.org/10.4012/dmj.2017-035
Article
PubMed
Google Scholar
Lin CL, Chang YH, Pai CA (2011) Evaluation of failure risks in ceramic restorations for endodontically treated premolar with MOD preparation. Dent Mater 27:431–438. https://doi.org/10.1016/j.dental.2010.10.026
Article
PubMed
Google Scholar
Guo J, Wang Z, Li X, Sun C, Gao E, Li H (2016) A comparison of the fracture resistances of endodontically treated mandibular premolars restored with endocrowns and glass fiber post-core retained conventional crowns. J Adv Prosthodont 8:489–493. https://doi.org/10.4047/jap.2016.8.6.489
Article
PubMed
PubMed Central
Google Scholar
Aktas G, Yerlikaya H, Akca K (2016) Mechanical failure of endocrowns manufactured with different ceramic materials: an in vitro biomechanical study. J Prosthodont 27:340–346. https://doi.org/10.1111/jopr.12499
Article
PubMed
Google Scholar
Carvalho AO, Bruzi G, Anderson RE, Maia HP, Giannini M, Magne P (2016) Influence of adhesive core buildup designs on the resistance of endodontically treated molars restored with lithium disilicate CAD/CAM crowns. Oper Dent 41:76–82. https://doi.org/10.2341/14-277-l
Article
PubMed
Google Scholar
Bindl A, Richter B, Mörmann W (2005) Survival of ceramic computer-aided design/manufacturing crowns bonded to preparations with reduced macroretention geometry. Int J Prosthodont 18:219–224
PubMed
Google Scholar
Hayes A, Duvall N, Wajdowicz M, Roberts H (2017) Effect of endocrown pulp chamber extension depth on molar fracture resistance. Oper Dent 42:327–334. https://doi.org/10.2341/16-097-l
Article
PubMed
Google Scholar
Soares CJ, Pizi ECG, Fonseca RB, Martin LRM (2005) Influence of root embedment material and periodontal ligament simulation on fracture resistance tests. Braz Oral Res 19:11–16
Article
Google Scholar
Skouridou N, Pollington S, Rosentritt M, Tsitrou E (2013) Fracture strength of minimally prepared all-ceramic CEREC crowns after simulating 5 years of service. Dent Mater 29:70–77. https://doi.org/10.1016/j.dental.2013.03.019
Article
Google Scholar
Chang CY, Kuo JS, Lin YS, Chang YH (2009) Fracture resistance and failure modes of CEREC endo-crowns and conventional post and core-supported CEREC crowns. J Dental Sci 4:110–117
Article
Google Scholar
Ramírez-Sebastià A, Bortolotto T, Cattani-Lorente M, Giner L, Roig M, Krejci I (2014) Adhesive restoration of anterior endodontically treated teeth: influence of post length on fracture strength. Clin Oral Investig 18:545–554. https://doi.org/10.1007/s00784-013-0978-3
Article
PubMed
Google Scholar
Marchionatti AME, Wandscher VF, Broch J, Bergoli CD, Maier J, Valandro LF, Kaizer OB (2014) Influence of periodontal ligament simulation on bond strength and fracture resistance of roots restored with fiber posts. J Appl Oral Sci 22:450–458. https://doi.org/10.1590/1678-775720140067
Article
PubMed
PubMed Central
Google Scholar
Varga S, Spalj S, Lapter Varga M, Anic Milosevic S, Mestrovic S, Slaj M (2011) Maximum voluntary molar bite force in subjects with normal occlusion. Eur J Orthod 33:427–433. https://doi.org/10.1093/ejo/cjq097
Article
PubMed
Google Scholar
Jassim ZM, Majeed MA (2018) Comparative evaluation of the fracture strength of monolithic crowns fabricated from different all-ceramic CAD/CAM materials (an in vitro study). Biomed Pharmacol J 11:1689–1697
Article
Google Scholar
Matinlinna JP, Lung CYK, Tsoi JKH (2018) Silane adhesion mechanism in dental applications and surface treatments: A review. Dent Mater 34:13–28. https://doi.org/10.1016/j.dental.2017.09.002
Article
PubMed
Google Scholar
Yamaguchi S, Inoue S, Sakai T, Abe T, Kitagawa H, Imazato S (2017) Multi-scale analysis of the effect of nano-filler particle diameter on the physical properties of CAD/CAM composite resin blocks. Comput Method Biomec 20:714–719. https://doi.org/10.1080/10255842.2017.1293664
Article
Google Scholar
El Ghoul W, Özcan M, Silwadi M, Salameh Z (2019) Fracture resistance and failure modes of endocrowns manufactured with different CAD/CAM materials under axial and lateral loading. J Esthet Restor Dent 31:378–387. https://doi.org/10.1111/jerd.12486
Article
PubMed
Google Scholar
Nguyen HH, Fong H, Paranjpe A, Flake NM, Johnson JD, Peters OA (2014) Evaluation of the resistance to cyclic fatigue among ProTaper Next, ProTaper Universal, and Vortex Blue rotary instruments. J Endod 40:1190–1193. https://doi.org/10.1016/j.joen.2013.12.033
Article
PubMed
Google Scholar