Skip to main content

Advertisement

Log in

The lingual enamel morphology and bracket shear bond strength influenced by Nd:YAG laser and aluminum oxide sandblasting preconditioning

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

This study aimed to investigate the influence of Nd:YAG laser and aluminum oxide sandblasting on the shear bond strength (SBS) of lingual brackets and to optically analyze the behavior of the enamel morphology.

Materials and methods

Thirty-five bovines’ incisors teeth were divided into 5 groups (n = 7), according to the surface preconditioning: G1, control group; G2, Nd:YAG laser; G3, laser + aluminum oxide sandblasting (Al2O3); G4, Al2O3; and G5, Al2O3 + laser. All groups had lingual brackets bonded and shear debonded after 72 h. SBS values were analyzed, and the enamel morphology was evaluated by optical coherence tomography (OCT) and scanning electron microscope (SEM), before and after preconditioning surface. The optical attenuation coefficient (α) analysis was obtained from OCT images. Data analysis used the ANOVA test, followed by post hoc Tukey, Kruskal Wallis, and post hoc Dunn tests (significance of 5%).

Results

The SBS values presented similarly among groups, but the value of α showed statistical difference (p-value = 0.0124) between G3 and G5 with the others. Optical analyses indicated a melting on the enamel that suffered laser irradiation for G2 and G5 and crystal surface disorganization for G4. Sandblasting partially removes the melting of the laser effect (G3).

Conclusion

The sandblasting is a dispensable step for bonding lingual brackets, and the melting of the enamel after laser irradiation does not compromise the bracket adhesive resistance.

Clinical relevance

The Nd:YAG laser became an interesting tool to prevent caries and decrease prevalence of white spot lesions in orthodontic treatments, without systemic effects in patients with genetic high risks of caries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Strömberg N, Esberg A, Sheng N, Mårell L, Löfgren-Burström A, Danielsson K, Källestål C (2017) Genetic- and lifestyle-dependent dental caries sefined by the acidic proline-rich protein genes PRH1 and PRH2. EBioMedicine 26:38–46. https://doi.org/10.1016/j.ebiom.2017.11.019

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sagarika N, Suchindran S, Loganathan S, Gopikrishna V (2012) Prevalence of white spot lesion in a section of Indian population undergoing fixed orthodontic treatment: an in vivo assessment using the visual International Caries Detection and Assessment System II criteria. J Conserv Dent 15:104–108. https://doi.org/10.4103/0972-0707.94572

    Article  PubMed  PubMed Central  Google Scholar 

  3. Livas C, Kuijpers-Jagtman AM, Bronkhorst E, Derks A, Katsaros C (2008) Quantification of white spot lesions around orthodontic brackets with image analysis. Angle Orthod 78:585–590. https://doi.org/10.2319/0003-3219(2008)078[0585:QOWSLA]2.0.CO;2

    Article  PubMed  Google Scholar 

  4. Listl S, Galloway J, Mossey PA, Marcenes W (2015) Global economic impact of dental diseases. J Dent Res 94:1355–1361. https://doi.org/10.1177/0022034515602879

    Article  PubMed  Google Scholar 

  5. Demling A, Demling C, Schwestka-Polly R, Stiesch M, Heuer W (2010) Short-term influence of lingual orthodontic therapy on microbial parameters and periodontal status a preliminary study. Angle Orthod 80:480–484. https://doi.org/10.2319/061109-330.1

    Article  PubMed  Google Scholar 

  6. van der Veen MH, Attin R, Schwestka-Polly R, Wiechmann D (2010) Caries outcomes after orthodontic treatment with fixed appliances: do lingual brackets make a difference? Eur J Oral Sci. 118:298–303. https://doi.org/10.1111/j.1600-0722.2010.00733.x

    Article  PubMed  Google Scholar 

  7. Wiechmann D, Klang E, Helms HJ, Knösel M (2015) Lingual appliances reduce the incidence of white spot lesions during orthodontic multibracket treatment. Am J Orthod Dentofacial Orthop 148:414–422. https://doi.org/10.1016/j.ajodo.2015.05.015

    Article  PubMed  Google Scholar 

  8. Lombardo L, Ortan YÖ, Gorgun Ö, Panza C, Scuzzo G, Siciliani G (2013) Changes in the oral environment after placement of lingual and labial orthodontic appliances. Prog Orthod 14:28–35. https://doi.org/10.1186/2196-1042-14-28

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brokos Y, Stavridakis M, Bortolotto T, Krejci I (2015) Evaluation of enamel thickness of upper anterior teeth in different age groups by dental cone beam computed tomography scan in vivo. IJACR 2:1396–409

  10. Ward P (2013) Bonding techniques in lingual orthodontics. J Orthod 40:s20–s26. https://doi.org/10.1179/1465313313Y.0000000060

    Article  Google Scholar 

  11. Halpern RM, Rouleau T (2010) The effect of air abrasion preparation on the shear bond strength of an orthodontic bracket bonded to enamel. Eur J Orthod 32:224–227. https://doi.org/10.1093/ejo/cjp080

    Article  PubMed  Google Scholar 

  12. Bayram M, Yesilyurt C, Kusgöz A, Ulker M, Nur M (2011) Shear bond strength of orthodontic brackets to aged resin composite surfaces: effect of surface conditioning. Eur J Orthod 33:174–179. https://doi.org/10.1093/ejo/cjq048

    Article  PubMed  Google Scholar 

  13. Mati M, Amm E, Bouserhal J, Bassil-Nassif N (2012) Effet du microsablage de l’émail vestibulaire et lingual sur la résistance au cisaillement d’attaches orthodontiques collées avec un primaire automordançant. Int Orthod 10:422–431. https://doi.org/10.1016/j.ortho.2012.09.008

    Article  PubMed  Google Scholar 

  14. Lombardo L, Kaplan A, Lapenta R, Bratti E, Pera C, Scuzzo G, Siciliani G (2011) A comparative study of lingual bracket bond strength. Orthodontics 12:178–187

    PubMed  Google Scholar 

  15. Suma S, Anita G, Chandra Shekar B, Kallury A (2012) The effect of air abrasion on the retention of metallic brackets bonded to fluorosed enamel surface. Indian J Dent Res 23:230–235. https://doi.org/10.4103/0970-9290.100432

    Article  PubMed  Google Scholar 

  16. Hamdan WA, Badri S, El Sayed A (2018) The effect of fluoride varnish in preventing enamel demineralization around and under orthodontic bracket. Int Orthod 16:1–11. https://doi.org/10.1016/j.ortho.2018.01.005

    Article  PubMed  Google Scholar 

  17. Nascimento PL d MM, Fernandes MTG, de Figueiredo FED, Faria-e-Silva AL (2016) Fluoride-releasing materials to prevent white spot lesions around orthodontic brackets: a systematic review. Braz Dent J 27:101–107. https://doi.org/10.1590/0103-6440201600482

    Article  PubMed  Google Scholar 

  18. Braga SRM, de Oliveira E, Sobral MAP (2017) Effect of neodymium:yttrium-aluminum-garnet laser and fluoride on the acid demineralization of enamel. J Investig Clin Dent 8:1–6. https://doi.org/10.1111/jicd.12185

    Article  Google Scholar 

  19. Seino PY, Freitas PM, Marques MM, de Souza Almeida FC, Botta SB, Moreira MSNA (2015) Influence of CO2 (10.6 μm) and Nd:YAG laser irradiation on the prevention of enamel caries around orthodontic brackets. Lasers Med Sci 30:611–616. https://doi.org/10.1007/s10103-013-1380-8

    Article  PubMed  Google Scholar 

  20. Zezell DM, Boari HGD, Ana PA, Eduardo CDP, Powell GL (2009) Nd:YAG laser in caries prevention: a clinical trial. Lasers Surg Med 41:31–35. https://doi.org/10.1002/lsm.20738

    Article  PubMed  Google Scholar 

  21. Reynolds IR (1975) A review of direct orthodontic bonding. Br J Orthod 2:171–178. https://doi.org/10.1080/0301228X.1975.11743666

    Article  Google Scholar 

  22. Larry J, Oesterle LJ, Shellhart WC, Gary K, Belanger G (1998) The use of bovine enamel in bonding studies. Am J Orthod Dentofacial Orthop 114:514–519. https://doi.org/10.1016/s0889-5406(98)70171-4

    Article  Google Scholar 

  23. Eng J (2003) Sample size estimation: how many individuals should be studied? Radiology 227:309–313. https://doi.org/10.1148/radiol.2272012051

    Article  PubMed  Google Scholar 

  24. Cara ACB, Zezell DM, Ana PA, Maldonado EP, Freitas AZ (2014) Evaluation of two quantitative analysis methods of optical coherence tomography for detection of enamel demineralization and comparison with microhardness. Lasers Surg Med 46:666–671. https://doi.org/10.1002/lsm.22292

    Article  PubMed  Google Scholar 

  25. Boari HGD, Ana PA, Eduardo CP, Powell GL, Zezell DM (2009) Absorption and thermal study of dental enamel when irradiated with Nd:YAG laser with the aim of caries prevention. Laser Phys 19:1463–1469. https://doi.org/10.1134/S1054660X09070160

    Article  Google Scholar 

  26. Shpack N, Geron S, Floris I, Davidovitch M, Brosh T, Vardimon AD (2007) Bracket placement in lingual vs labial systems and direct vs indirect bonding. Angle Orthod 77:509–517. https://doi.org/10.2319/0003-3219(2007)077[0509:BPILVL]2.0.CO;2

    Article  PubMed  Google Scholar 

  27. Nakamichi I, Iwaku M, Fusayama T (1983) Bovine teeth as possible substitutes in the adhesion test. J Dent Res 62:1076–1081. https://doi.org/10.1177/00220345830620101501

    Article  PubMed  Google Scholar 

  28. Carvalho MFF, Leijôto-Lannes ACN, Rodrigues MCN d S, Nogueira LC, Ferraz NKL, Moreira AN et al (2018) Viability of bovine teeth as a substrate in bond strength tests: a systematic review and meta-analysis. J Adhes Dent 20:471–479. https://doi.org/10.3290/j.jad.a41636

    Article  PubMed  Google Scholar 

  29. Finnema KJ, Özcan M, Post WJ, Ren Y, Dijkstra PU (2010) In-vitro orthodontic bond strength testing: a systematic review and meta-analysis. Am J Orthod Dentofac Orthop 137:615–622. https://doi.org/10.1016/j.ajodo.2009.12.021

    Article  Google Scholar 

  30. Sfondrini MF, Gandini P, Gioiella A, Zhou FX, Scribante A (2017) Orthodontic metallic lingual brackets: the dark side of the moon of bond mailures? J Funct Biomater 8:27–34. https://doi.org/10.3390/jfb8030027

    Article  PubMed Central  Google Scholar 

  31. Daratsianos N, Schütz B, Reimann S, Weber A, Papageorgiou SN, Jäger A, Bouraue C (2019) The influence of enamel sandblasting on the shear bond strength and fractography of the bracket adhesive-enamel complex tested in vitro by the DIN 13990:2017-04 standard. Clin Oral Investig 23:2975–2985. https://doi.org/10.1007/s00784-018-2692-7

    Article  PubMed  Google Scholar 

  32. Reicheneder C, Hofrichter B, Faltermeier A, Proff P, Lippold C, Kirschneck C (2014) Shear bond strength of different retainer wires and bonding adhesives in consideration of the pretreatment process. Head Face Med 10:51. https://doi.org/10.1186/1746-160X-10-51

    Article  PubMed  PubMed Central  Google Scholar 

  33. Robles-Ruíz JJ, Arana-Chavez VE, Ciamponi AL, Abrão J, Kanashiro LK (2015) Effects of sandblasting before orthophosphoric acid etching on lingual enamel: in-vitro roughness assessment. Am J Orthod Dentofacial Orthop 147:S76–S81. https://doi.org/10.1016/j.ajodo.2014.11.023

    Article  PubMed  Google Scholar 

  34. Patcas R, Zinelis S, Eliades G, Eliades T (2015) Surface and interfacial analysis of sandblasted and acid-etched enamel for bonding orthodontic adhesives. Am J Orthod Dentofacial Orthop 147:S64–S75. https://doi.org/10.1016/j.ajodo.2015.01.014

    Article  PubMed  Google Scholar 

  35. Ana PA, Bachmann L, Zezell DM (2006) Lasers effects on enamel for caries prevention. Laser Phys 16:865–875. https://doi.org/10.1134/S1054660X06050197

    Article  Google Scholar 

  36. Zezell DM, Ana PA, Benetti C, Goulart VP, Bachmann L, Tabchoury CPM, et al (2010) Compositional and crystallographic changes on enamel when irradiated by Nd:YAG or Er,Cr:YSGG lasers and its resistance to demineralization when associated with fluoride. Proc SPIE 7549, Laser Dent XVI 7549:75490G. https://doi.org/10.1117/12.842967

  37. Wen X, Zhang L, Liu R, Deng M, Wang Y, Liu L, Nie X (2014) Effects of pulsed Nd:YAG Laser on tensile bond strength and caries resistance of human enamel. Oper Dent 39:273–282. https://doi.org/10.2341/12-416-L

    Article  PubMed  Google Scholar 

  38. Banda NR, Reddy GV, Shashikiran ND (2011) Evaluation of primary tooth enamel surface morphology and microhardness after Nd: YAG laser irradiation and APF gel treatment-an in vitro study. Int J Clin Pediatr Dent 35:377–382. https://doi.org/10.17796/jcpd.35.4.8550556gp6r5xt6t

    Article  Google Scholar 

  39. Borsatto MC, Catirse ABEB, Palma Dibb RG, Nascimento TN, Rocha RASS, Corona SAM (2002) Shear bond strength of enamel surface treated with air-abrasive system. Braz Dent J 13:175–178. https://doi.org/10.1590/S0103-64402002000300006

    Article  PubMed  Google Scholar 

  40. Cal-Neto JP, Castro S, Moura PM, Ribeiro D, Miguel JAM (2011) Influence of enamel sandblasting prior to etching on shear bond strength of indirectly bonded lingual appliances. Angle Orthod 81:149–152. https://doi.org/10.2319/050210-237.1

    Article  PubMed  Google Scholar 

  41. Robles-Ruíz JJ, Ciamponi AL, Medeiros IS, Kanashiro LK (2014) Effect of lingual enamel sandblasting with aluminum oxide of different particle sizes in combination with phosphoric acid etching on indirect bonding of lingual brackets. Angle Orthod 84:1068–1073. https://doi.org/10.2319/120613-897.1

    Article  PubMed  Google Scholar 

  42. Zarif Najafi H, Moshkelgosha V, Khanchemehr A, Alizade A, Mokhtar A (2015) The effect of four surface treatment methods on the shear bond strength of metallic brackets to the fluorosed enamel. J Dent (Shiraz) 16:251–259

    Google Scholar 

  43. Baumgartner S, Koletsi D, Verna C, Eliades T (2017) The effect of enamel sandblasting on enhancing bond strength of orthodontic brackets : a systematic review. J Adhes Dent 19:463–473. https://doi.org/10.3290/j.jad.a39279

    Article  PubMed  Google Scholar 

  44. Maia AMA, De Freitas AZ, Campello SDL, Gomes ASL, Karlsson L (2016) Evaluation of dental enamel caries assessment using quantitative light induced fluorescence and optical coherence tomography. J Biophotonics 9:596–602. https://doi.org/10.1002/jbio.201500111

    Article  PubMed  Google Scholar 

  45. Popescu DP, Sowa MG, Hewko MD, Choo-Smith L-P (2008) Assessment of early demineralization in teeth using the signal attenuation in optical coherence tomography images. J Biomed Opt 13:054053. https://doi.org/10.1117/1.2992129

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sowa MG, Popescu DP, Friesen JR, Hewko MD, Choo-Smith LP (2011) A comparison of methods using optical coherence tomography to detect demineralized regions in teeth. J Biophoton 4:814–823. https://doi.org/10.1002/jbio.201100014

    Article  Google Scholar 

Download references

Funding

This study was financed in part by CAPES-PROCAD (grant number 88881.068505/2014-01) and sponsored by São Paulo Research Foundation (CEPID-FAPESP 05/51689-2 and 17/50332-0), CNPq National Institute of Photonics (no. 465763/2014-6), and PQ-1C 309902/2017-7.

Author information

Authors and Affiliations

Authors

Contributions

Mônica Schaffer Lopes contributed the idea, hypothesis, and experimental design; performed the experiments in partial fulfillment of requirements for a degree; performed a certain test; wrote the manuscript; and contributed substantially to discussion. Daísa Lima Pereira contributed the experimental design, consulted on and performed statistical evaluation, and contributed substantially to discussion. Cláudia Cristina Brainer de Oliveira Mota proofread the manuscript and contributed substantially to discussion. Marcello Magri Amaral developed the custom software for analysis, performed a certain test, and contributed substantially to discussion. Denise Maria Zezell conceived the experiment, provided infrastructure, proofread the manuscript, and contributed substantially to discussion. Anderson Stevens Leonidas Gomes conceived the experiment, provided infrastructure, proofread the manuscript, and contributed substantially to discussion.

Corresponding author

Correspondence to Denise Maria Zezell.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

This ex vivo study was exempted from the evaluation by the Ethical Committee on Animal Experiments (Universidade de São Paulo) under process number 107/12, since it used bovine teeth collected in accredited slaughterhouse.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, M.S., Pereira, D.L., de Oliveira Mota, C.C.B. et al. The lingual enamel morphology and bracket shear bond strength influenced by Nd:YAG laser and aluminum oxide sandblasting preconditioning. Clin Oral Invest 25, 1151–1158 (2021). https://doi.org/10.1007/s00784-020-03418-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-020-03418-x

Keywords

Navigation