Skip to main content

Advertisement

Log in

Adhesive luting of orthodontic devices to silica-based ceramic crowns—comparison of shear bond strength and surface properties

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The aim of this study was to analyse the impact of different clinical conditioning approaches and an ammonium polyfluoride- and trimethoxysilylpropyl methacrylate-based experimental primer for intraoral luting of buccal tubes on silica-based ceramic surfaces.

Materials and methods

A total of 60 leucite-reinforced glass ceramic molar crowns were conditioned using different methods (n = 10): I-roughening, hydrofluoric acid, silane; II-roughening, silane; III-roughening, experimental coupling agent; IV-experimental coupling agent; V-roughening; VI-no treatment. A buccal tube was adhesively luted to the ceramic surface. Subsequently, water storage, thermocycling and chewing simulation were carried out. The shear bond strength (SBS) was determined, and changes in the surface were assessed.

Results

All tubes of the control group (group VI) debonded after incubation. The conditioning methods using coupling agents revealed mean values for SBS of 61.56 MPa (group I), 45.53 MPa (group III), 41.65 MPa (group II), and 23.14 MPa (group IV). In groups I–III, both composite residues and cracks/tear-outs were detected.

Conclusions

The conditioning of silicate ceramic surfaces with a suitable coupling agent system appears to allow sufficient adhesive luting of buccal tubes. The intraoral luting of fixed appliance elements on silicate ceramic surfaces using an ammonium polyfluoride- and trimethoxysilylpropyl methacrylate-based ceramic primer can withstand orthodontic forces.

Clinical relevance

Ammonium polyfluoride- and trimethoxysilylpropyl methacrylate-based ceramic primers revealed promising results for the intraoral adhesive luting of orthodontic devices to silica-based ceramic crowns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Girish PV, Dinesh U, Bhat R et al (2012) Comparison of shear bond strength of metal brackets bonded to porcelain surface using different surface conditioning methods: an in vitro study. J Contemp Dent Pract 13(4):487–493

    Article  Google Scholar 

  2. Makhija SK, Lawson NC, Gilbert GH, Litaker MS, McClelland J, Louis DR, Gordan VV, Pihlstrom DJ, Meyerowitz C, Mungia R, McCracken M, National Dental PBRN Collaborative Group (2016) Dentist material selection for single-unit crowns: findings from the National Dental Practice-Based Research Network. J Dent 55:40–47. https://doi.org/10.1016/j.jdent.2016.09.010

    Article  PubMed  PubMed Central  Google Scholar 

  3. Özarslan MM, Üstün Ö, Buyukkaplan US, Barutcigil Ç, Türker N, Barutcigil K (2018) Assessment the bond strength of ceramic brackets to CAD/CAM nanoceramic composite and interpenetrating network composite after different surface treatments. Biomed Res Int 2018:1871598. https://doi.org/10.1155/2018/1871598

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang Z-C, Qian Y-F, Yang Y-M, Feng QP, Shen G (2016) Bond strength of metal brackets bonded to a silica-based ceramic with light-cured adhesive: influence of various surface treatment methods (bond strength of metal brackets bonded to a silica-based ceramic with light-cured adhesive: influence of various surface treatment methods). J Orofac Orthop 77(5):366–372. https://doi.org/10.1007/s00056-016-0044-2

    Article  PubMed  Google Scholar 

  5. Sharma S, Tandon P, Nagar A, Singh GP, Singh A, Chugh VK (2014) A comparison of shear bond strength of orthodontic brackets bonded with four different orthodontic adhesives. J Orthod Sci 3(2):29–33. https://doi.org/10.4103/2278-0203.132892

    Article  PubMed  PubMed Central  Google Scholar 

  6. Reynolds IR (1975) A review of direct orthodontic bonding. Br J Orthod 2(3):171–178. https://doi.org/10.1080/0301228X.1975.11743666

    Article  Google Scholar 

  7. Bishara SE, Olsen ME, Damon P, Jakobsen JR (1998) Evaluation of a new light-cured orthodontic bonding adhesive. Am J Orthod Dentofac Orthop 114(1):80–87

    Article  Google Scholar 

  8. Falkensammer F, Freudenthaler J, Pseiner B, Bantleon HP (2012) Influence of surface conditioning on ceramic microstructure and bracket adhesion. Eur J Orthod 34(4):498–504. https://doi.org/10.1093/ejo/cjr034

    Article  PubMed  Google Scholar 

  9. Di Guida LA, Benetti P, Corazza PH et al (2019) The critical bond strength of orthodontic brackets bonded to dental glass-ceramics. Clin Oral Investig 23:4345–4353. https://doi.org/10.1007/s00784-019-02881-5

    Article  PubMed  Google Scholar 

  10. Zachrisson YO, Zachrisson BU, Büyükyilmaz T (1996) Surface preparation for orthodontic bonding to porcelain. Am J Orthod Dentofac Orthop 109(4):420–430

    Article  Google Scholar 

  11. Ebert T, Elsner L, Hirschfelder U, Hanke S (2016) Shear bond strength of brackets on restorative materials: comparison on various dental restorative materials using the universal primer Monobond® plus. J Orofac Orthop 77(2):73–84. https://doi.org/10.1007/s00056-016-0011-y

    Article  PubMed  Google Scholar 

  12. Tian T, Tsoi JK-H, Matinlinna JP et al (2014) Aspects of bonding between resin luting cements and glass ceramic materials. Dent Mat 30(7):e147–e162. https://doi.org/10.1016/j.dental.2014.01.017

    Article  Google Scholar 

  13. Bajraktarova-Valjakova E, Korunoska-Stevkovska V, Georgieva S, Ivanovski K, Bajraktarova-Misevska C, Mijoska A, Grozdanov A (2018) Hydrofluoric acid: burns and systemic toxicity, protective measures, immediate and hospital medical treatment. Open Access Maced J Med Sci 6(11):2257–2269. https://doi.org/10.3889/oamjms.2018.429

    Article  PubMed  PubMed Central  Google Scholar 

  14. Borges GA, Sophr AM, de Goes MF, Sobrinho LC, Chan DC (2003) Effect of etching and airborne particle abrasion on the microstructure of different dental ceramics. J Prosthet Dent 89(5):479–488. https://doi.org/10.1016/S0022391302527049

    Article  PubMed  Google Scholar 

  15. Aksakalli S, Ileri Z, Yavuz T, Malkoc MA, Ozturk N (2015) Porcelain laminate veneer conditioning for orthodontic bonding: SEM-EDX analysis. Lasers Med Sci 30(7):1829–1834. https://doi.org/10.1007/s10103-014-1682-5

    Article  PubMed  Google Scholar 

  16. Ivoclar Vivadent (2018) Monobond+Etch+&+Prime+Scientific+Report+Vol−+01–2018. https://www.ivoclarvivadent.ch/de-ch/produktkategorien/einsetzen/monobond-etch-prime-1. Accessed 22 Oct 2019

  17. Kern M, Strub JR, Lu XY (1999) Wear of composite resin veneering materials in a dual-axis chewing simulator. J Oral Rehabil 26(5):372–378

    Article  Google Scholar 

  18. Naumann M, Metzdorf G, Fokkinga W, Watzke R, Sterzenbach G, Bayne S, Rosentritt M (2009) Influence of test parameters on in vitro fracture resistance of post-endodontic restorations: a structured review. J Oral Rehabil 36(4):299–312. https://doi.org/10.1111/j.1365-2842.2009.01940.x

    Article  PubMed  Google Scholar 

  19. Artun J, Bergland S (1984) Clinical trials with crystal growth conditioning as an alternative to acid-etch enamel pretreatment. Am J Orthod 85(4):333–340

    Article  Google Scholar 

  20. Alhaija A, Elham SJ, Abu AlReesh IA, AlWahadni AMS (2010) Factors affecting the shear bond strength of metal and ceramic brackets bonded to different ceramic surfaces. Eur J Orthod 32(3):274–280. https://doi.org/10.1093/ejo/cjp098

    Article  PubMed  Google Scholar 

  21. Axelsson P (2006) The effect of a needs-related caries preventive program in children and young adults-results after 20 years. BMC Oral Health 6(Suppl 1):S7. https://doi.org/10.1186/1472-6831-6-S1-S7

    Article  PubMed  PubMed Central  Google Scholar 

  22. Malmberg P, Norén JG, Bernin D (2019) Molecular insights into hypomineralized enamel. Eur J Oral Sci. https://doi.org/10.1111/eos.12619

  23. Baumgartner S, Koletsi D, Verna C, Eliades T (2017) The effect of enamel sandblasting on enhancing bond strength of orthodontic brackets: a systematic review and meta-analysis. J Adhes Dent 19(6):463–473. https://doi.org/10.3290/j.jad.a39279

    Article  PubMed  Google Scholar 

  24. Reicheneder C, Hofrichter B, Faltermeier A, Proff P, Lippold C, Kirschneck C (2014) Shear bond strength of different retainer wires and bonding adhesives in consideration of the pretreatment process. Head Face Med 10:51. https://doi.org/10.1186/1746-160X-10-51

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kim J, Park C, Lee J-S, Ahn J, Lee Y (2017) The effect of various types of mechanical and chemical preconditioning on the shear bond strength of orthodontic brackets on zirconia restorations. Scanning 2017:6243179. https://doi.org/10.1155/2017/6243179

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dutra D, Pereira G, Kantorski KZ, Valandro LF, Zanatta FB (2018) Does finishing and polishing of restorative materials affect bacterial adhesion and biofilm formation? A systematic review. Oper Dent 43(1):E37–E52. https://doi.org/10.2341/17-073-L

    Article  PubMed  Google Scholar 

  27. Rashid H (2014) The effect of surface roughness on ceramics used in dentistry: a review of literature. Eur J Dent 8(4):571–579. https://doi.org/10.4103/1305-7456.143646

    Article  PubMed  PubMed Central  Google Scholar 

  28. Flury S, Peutzfeldt A, Lussi A (2012) Influence of surface roughness on mechanical properties of two computer-aided design/computer-aided manufacturing (CAD/CAM) ceramic materials. Oper Dent 37(6):617–624. https://doi.org/10.2341/11-391-L

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dentaurum (Ispringen, Deutschland) and Ivoclar Vivadent (Schaan, Liechtenstein) for supplying the materials used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelika Rauch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent was not required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miersch, S., König, A., Mehlhorn, S. et al. Adhesive luting of orthodontic devices to silica-based ceramic crowns—comparison of shear bond strength and surface properties. Clin Oral Invest 24, 3009–3016 (2020). https://doi.org/10.1007/s00784-019-03168-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-019-03168-5

Keywords

Navigation