Skip to main content

Advertisement

Log in

Clustering effects of oral conditions based on clinical and radiographic examinations

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The intra-class correlation coefficient (ICC) is a measure of intra-subject clustering effects. A priori estimates of the ICC and the associated design effect (DE) are required for sample size estimation in clustered studies, and should be considered during their analysis, too. We aimed to determine the clustering effects of carious lesions, apical lesions, periodontal bone loss, and periodontal pocketing, assessed in clinical or radiographic examinations.

Methods

A subsample of patients (n = 175) enrolled in the fifth German Oral Health Study provided data on clinically determined carious teeth (i.e., with untreated carious lesions, WHO method) as well as teeth with periodontal pocketing (i.e., with maximum probing-pocket-depths ≥ 4 mm). A sample of panoramic radiographs (n = 85) from randomly chosen patients, examined from 2010 to 2017 at the Charité dental hospital, provided data on radiographically determined carious teeth (i.e., with lesions extending into dentine or enamel), teeth with apical lesions (determined by dentists via majority vote), and teeth with periodontal bone loss (≥ 20% of root-length). The ICC and its 95% confidence interval (95% CI) were determined.

Results

There were 3839 and 1961 teeth assessed in clinical and radiographic evaluations, respectively. For clinically or radiographically determined carious lesions, the ICC (95% CI) was 0.20 (0.16–0.24) or 0.19 (0.14–0.25), respectively. For clinical pocketing or radiographic bone loss, the ICC was 0.40 (0.35–0.46) or 0.30 (0.24–0.38), respectively. The lowest ICC was found for apical lesions at 0.08 (0.06–0.13).

Conclusions

The ICC varied between assessment methods and conditions. Clustered trials should account for this during study planning and data analysis.

Clinical relevance

Within the limitations of this study, and considering the risk of selection bias and the limited sample sizes of both datasets, clustering effects were substantial but varied between dental conditions. Studies not accounting for this during planning and analysis may yield misleading estimates if clustering is present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The database can be made available on request provided data protection rules can be fulfilled.

References

  1. Campbell MK, Elbourne DR, Altman DG (2004) CONSORT statement: extension to cluster randomised trials. BMJ328. doi:https://doi.org/10.1136/bmj.328.7441.702

  2. Fleming PS, Koletsi D, Polychronopoulou A, Eliades T, Pandis N (2013) Are clustering effects accounted for in statistical analysis in leading dental specialty journals? J Dent 41(3):265–270. https://doi.org/10.1016/j.jdent.2012.11.012

    Article  PubMed  Google Scholar 

  3. Litaker MS, Gordan VV, Rindal DB, Fellows JL, Gilbert GH (2013) Cluster effects in a National Dental PBRN restorative study. J Dent Res 92(9):782–787. https://doi.org/10.1177/0022034513497752

    Article  PubMed  PubMed Central  Google Scholar 

  4. Masood M, Masood Y, Newton JT (2015) The clustering effects of surfaces within the tooth and teeth within individuals. J Dent Res 94(2):281–288. https://doi.org/10.1177/0022034514559408

    Article  PubMed  PubMed Central  Google Scholar 

  5. Burnside G, Pine CM, Williamson PR (2006) Statistical aspects of design and analysis of clinical trials for the prevention of caries. Caries Res 40(5):360–365. https://doi.org/10.1159/000094279

    Article  PubMed  Google Scholar 

  6. Froud R, Eldridge S, Diaz Ordaz K, Marinho VCC, Donner A (2012) Quality of cluster randomized controlled trials in oral health: a systematic review of reports published between 2005 and 2009. Community Dent Oral Epidemiol 40(s1):3–14. https://doi.org/10.1111/j.1600-0528.2011.00660.x

    Article  PubMed  Google Scholar 

  7. Kerry SM, Bland JM (1998) Analysis of a trial randomised in clusters. BMJ 316(7124):54. https://doi.org/10.1136/bmj.316.7124.54

    Article  PubMed  PubMed Central  Google Scholar 

  8. Eldridge SM, Ashby D, Kerry S (2006) Sample size for cluster randomized trials: effect of coefficient of variation of cluster size and analysis method. Int J Epidemiol 35(5):1292–1300. https://doi.org/10.1093/ije/dyl129

    Article  PubMed  Google Scholar 

  9. Kerry SM, Bland JM (1998) Statistics notes: sample size in cluster randomisation. BMJ 316(7130):549. https://doi.org/10.1136/bmj.316.7130.549

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hayes RJ, Bennett S (1999) Simple sample size calculation for cluster-randomized trials. Int J Epidemiol 28(2):319–326. https://doi.org/10.1093/ije/28.2.319

    Article  PubMed  Google Scholar 

  11. Schwendicke F, Opdam N (2017) Clinical studies in restorative dentistry: design, conduct, analysis. Dental materials : official publication of the Academy of Dental Materials. https://doi.org/10.1016/j.dental.2017.09.009

  12. Hemming K, Eldridge S, Forbes G, Weijer C, Taljaard M (2017) How to design efficient cluster randomised trials. BMJ 358:j3064. https://doi.org/10.1136/bmj.j3064

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, Lijmer JG, Moher D, Rennie D, de Vet HC, Kressel HY, Rifai N, Golub RM, Altman DG, Hooft L, Korevaar DA, Cohen JF (2015) STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. Bmj 351:h5527. https://doi.org/10.1136/bmj.h5527

    Article  PubMed  PubMed Central  Google Scholar 

  14. Machado ME, Tomazoni F, Casarin M, Ardenghi TM, Zanatta FB (2017) Partial-mouth periodontal examination protocols for the determination of the prevalence and extent of gingival bleeding in adolescents. Community Dent Oral Epidemiol 45(5):427–433. https://doi.org/10.1111/cdoe.12306

    Article  PubMed  Google Scholar 

  15. Zou GY (2012) Sample size formulas for estimating intraclass correlation coefficients with precision and assurance. Stat Med 31(29):3972–3981. https://doi.org/10.1002/sim.5466

    Article  PubMed  Google Scholar 

  16. Jordan RA, Bodechtel C, Hertrampf K, Hoffmann T, Kocher T, Nitschke I, Schiffner U, Stark H, Zimmer S, Micheelis W (2014) The fifth German oral health study (Funfte Deutsche Mundgesundheitsstudie, DMS V) - rationale, design, and methods. BMC oral health 14:161–112. https://doi.org/10.1186/1472-6831-14-161

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jordan RA, Micheelis W (2016) Fünfte Deutsche Mundgesundheitsstudie. Köln

    Google Scholar 

  18. Jordan AR, Krois J, Schiffner U, Micheelis W, Schwendicke F (2018) Trends in caries experience in the permanent dentition in Germany 1997–2030: morbidity shifts in an ageing society. Scientific reports submitted

    Google Scholar 

  19. Schwendicke F, Krois J, Kocher T, Hoffmann T, Micheelis W, Jordan AR (2018) More teeth in more elderly: periodontal treatment needs in Germany 1997–2030. J Clin Periodontol 45(12):1400–1407

    Article  Google Scholar 

  20. Ekert T, Krois J, Meinhold L, Elhennawy K, Emara R, Golla T, Schwendicke F (2019) Deep learning for the radiographic detection of apical lesions. J Endod. https://doi.org/10.1016/j.joen.2019.03.016

  21. Krois J, Ekert T, Meinhold L, Golla T, Kharbot B, Wittemeier A, Dorfer C, Schwendicke F (2019) Deep learning for the radiographic detection of periodontal bone loss. Sci Rep 9(1):8495. https://doi.org/10.1038/s41598-019-44839-3

    Article  PubMed  PubMed Central  Google Scholar 

  22. Graetz C, Dorfer CE, Kahl M, Kocher T, Fawzy El-Sayed K, Wiebe JF, Gomer K, Ruhling A (2011) Retention of questionable and hopeless teeth in compliant patients treated for aggressive periodontitis. J Clin Periodontol 38(8):707–714. https://doi.org/10.1111/j.1600-051X.2011.01743.x

    Article  PubMed  Google Scholar 

  23. Norderyd O, Hugoson A, Grusovin G (1999) Risk of severe periodontal disease in a Swedish adult population. A longitudinal study. J Clin Periodontol 26(9):608–615

    Article  Google Scholar 

  24. Killip S, Mahfoud Z, Pearce K (2004) What is an intracluster correlation coefficient? Crucial concepts for primary care researchers. Ann Fam Med 2(3):204–208. https://doi.org/10.1370/afm.141

    Article  PubMed  PubMed Central  Google Scholar 

  25. Byrt T, Bishop J, Carlin JB (1993) Bias, prevalence and kappa. J Clin Epidemiol 46(5):423–429

    Article  Google Scholar 

  26. Persoon IF, Özok AR (2017) Definitions and epidemiology of endodontic infections. Current oral health reports 4(4):278–285. https://doi.org/10.1007/s40496-017-0161-z

    Article  PubMed  PubMed Central  Google Scholar 

  27. Persic Bukmir R, Jurcevic Grgic M, Brumini G, Spalj S, Pezelj-Ribaric S, Brekalo Prso I (2016) Influence of tobacco smoking on dental periapical condition in a sample of Croatian adults. Wien Klin Wochenschr 128(7–8):260–265. https://doi.org/10.1007/s00508-015-0910-8

    Article  PubMed  Google Scholar 

  28. Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine Daniel H, Flemmig Thomas F, Garcia R, Giannobile William V, Graziani F, Greenwell H, Herrera D, Kao Richard T, Kebschull M, Kinane Denis F, Kirkwood Keith L, Kocher T, Kornman Kenneth S, Kumar Purnima S, Loos Bruno G, Machtei E, Meng H, Mombelli A, Needleman I, Offenbacher S, Seymour Gregory J, Teles R, Tonetti Maurizio S (2018) Periodontitis: consensus report of workgroup 2 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. J Clin Periodontol 45(S20):S162–S170. https://doi.org/10.1111/jcpe.12946

    Article  PubMed  Google Scholar 

  29. KZBV (2017) Catalogue of Fees [Gebührenverzeichnisse]:2017 http://www.kzbv.de/gebuehrenverzeichnisse.334.de.html

  30. Lang NP, Suvan JE, Tonetti MS (2015) Risk factor assessment tools for the prevention of periodontitis progression a systematic review. J Clin Periodontol 42(Suppl 16):S59–S70. https://doi.org/10.1111/jcpe.12350

    Article  PubMed  Google Scholar 

  31. Schwendicke F, Schmietendorf E, Plaumann A, Sälzer S, Dörfer C, Graetz C (2018) Validation of multivariable models for predicting tooth loss in periodontitis patients. J Clin Periodontol 45(6):701–710

    Article  Google Scholar 

  32. Walsh T (2018) Fuzzy gold standards: approaches to handling an imperfect reference standard. J Dent 74(Suppl 1):S47–s49. https://doi.org/10.1016/j.jdent.2018.04.022

    Article  PubMed  Google Scholar 

  33. Abu El-Ela WH, Farid MM, Mostafa MS (2016) Intraoral versus extraoral bitewing radiography in detection of enamel proximal caries: an ex vivo study. Dento maxillo facial radiology 45(4):20150326. https://doi.org/10.1259/dmfr.20150326

    Article  PubMed  PubMed Central  Google Scholar 

  34. Akkaya N, Kansu O, Kansu H, Cagirankaya LB, Arslan U (2006) Comparing the accuracy of panoramic and intraoral radiography in the diagnosis of proximal caries. Dento maxillo facial radiology 35(3):170–174. https://doi.org/10.1259/dmfr/26750940

    Article  PubMed  Google Scholar 

  35. Clifton TL, Tyndall DA, Ludlow JB (1998) Extraoral radiographic imaging of primary caries. Dento maxillo facial radiology 27(4):193–198. https://doi.org/10.1038/sj/dmfr/4600346

    Article  PubMed  Google Scholar 

  36. Kamburoglu K, Kolsuz E, Murat S, Yuksel S, Ozen T (2012) Proximal caries detection accuracy using intraoral bitewing radiography, extraoral bitewing radiography and panoramic radiography. Dento maxillo facial radiology 41(6):450–459. https://doi.org/10.1259/dmfr/30526171

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falk Schwendicke.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval and informed consent

Clinical data collection was ethically approved by the Medical Association North-Rhine (No. 2013384). All participants completed the written informed consent forms for this data collection. Radiographic data was collected under the approval of the Charité ethics committee EA4/080/18); informed consent of patients was not needed according to Berliner Krankenhausgesetz (Berlin Hospital Law).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meinhold, L., Krois, J., Jordan, R. et al. Clustering effects of oral conditions based on clinical and radiographic examinations. Clin Oral Invest 24, 3001–3008 (2020). https://doi.org/10.1007/s00784-019-03164-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-019-03164-9

Keywords

Navigation