Skip to main content

Advertisement

Log in

Longitudinal study of risk for facial nerve injury in mandibular condyle fracture surgery: marginal mandibular branch-traversing classification of percutaneous approaches

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

This study aimed to longitudinally assess the risk of facial nerve injury (FNI) in the surgical repair of mandibular condylar neck and subcondylar fractures (CN/SCFs) and to explore its predictors.

Materials and methods

In a retrospective cohort study, the outcome was defined as FNI at 1 week and 1, 3, and 6 months postoperatively. Potential predictors included age, sex, etiology, fracture site and pattern (dislocation/non-dislocation), concomitant facial fractures, interval to surgery, surgeons’ experience, plate types, and the marginal mandibular branch-traversing approach (deep/superficial group). We employed generalized estimating equations (GEEs) for repeated measurements throughout the 6-month follow-up period.

Results

Among 102 patients with 114 fractures, 27 patients (26.5%) developed FNI within 1 week. Prolonged FNI (≥ 1 month) occurred in 19 (19.2%) of 99 patients. Multivariate GEE analyses revealed that deep surgical approaches (i.e., traditional submandibular and retroparotid approaches; odds ratio [OR], 18.90; p = 0.011), fractures with dislocation (OR, 3.60; p = 0.025), and female gender (OR, 2.71; p = 0.040) were independently associated with the overall FNI risk. Additionally, the deep approaches (OR, 15.91; p = 0.014) and female gender (OR, 3.41; p = 0.035) were correlated with a prolonged FNI risk. Sensitivity analyses for the outcomes identified the same predictors.

Conclusion

The predictors longitudinally associated with FNI in CN/SCF surgeries included a deep MMB-traversing approach, dislocated fracture, and female gender.

Clinical relevance

The superficial surgical approaches (i.e., transparotid, transmasseteric anteroparotid, and high perimandibular approaches) should be adopted for CN/SCF treatment to minimize postoperative morbidity, especially for female patients with dislocated condyles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zachariades N, Mezitis M, Mourouzis C, Papadakis D, Spanou A (2006) Fractures of the mandibular condyle: a review of 466 cases. Literature review, reflections on treatment and proposals. J Craniomaxillofac Surg 34(7):421–432

    Article  Google Scholar 

  2. Wang HD, Susarla SM, Mundinger GS, Schultz BD, Yang R, Bojovic B, Christy MR, Manson PN, Rodriguez ED, Dorafshar AH (2016) Which factors are associated with open reduction of adult mandibular condylar injuries? Plast Reconstr Surg 137(6):1813–1821

    Article  Google Scholar 

  3. Schneider M, Erasmus F, Gerlach KL, Kuhlisch E, Loukota RA, Rasse M, Schubert J, Terheyden H, Eckelt U (2008) Open reduction and internal fixation versus closed treatment and mandibulomaxillary fixation of fractures of the mandibular condylar process: a randomized, prospective, multicenter study with special evaluation of fracture level. J Oral Maxillofac Surg 66(12):2537–2544

    Article  Google Scholar 

  4. Singh V, Bhagol A, Goel M, Kumar I, Verma A (2010) Outcomes of open versus closed treatment of mandibular subcondylar fractures: a prospective randomized study. J Oral Maxillofac Surg 68(6):1304–1309

    Article  Google Scholar 

  5. Ellis E, McFadden D, Simon P, Throckmorton G (2000) Surgical complications with open treatment of mandibular condylar process fractures. J Oral Maxillofac Surg 58(9):950–958

    Article  Google Scholar 

  6. Al-Moraissi EA, Louvrier A, Colletti G, Wolford LM, Biglioli F, Ragaey M et al (2018) Does the surgical approach for treating mandibular condylar fractures affect the rate of seventh cranial nerve injuries? A systematic review and meta-analysis based on a new classification for surgical approaches. J Craniomaxillofac Surg 46(3):398–412

    Article  Google Scholar 

  7. Rozeboom AVJ, Dubois L, Bos RRM, Spijker R, de Lange J (2018) Open treatment of condylar fractures via extraoral approaches: a review of complications. J Craniomaxillofac Surg 46(8):1232–1240

    Article  Google Scholar 

  8. Imai T, Nakazawa M, Uzawa N (2019) Four-step chart of percutaneous approaches to the mandibular condyle: a proposal of a visualized system for intuitive comprehension. J Oral Maxillofac Surg 77(2):238–239

    Article  Google Scholar 

  9. Imai T, Nakazawa M, Uzawa N (2019) Advanced model of a 4-step chart for percutaneous approaches to condylar fractures: a tool to comprehend trends in classification based on the dissection route. J Oral Maxillofac Surg 77(10):1962–1964

    Article  Google Scholar 

  10. Ellis E, Dean J (1993) Rigid fixation of mandibular condyle fractures. Oral Surg Oral Med Oral Pathol 76(1):6–15

    Article  Google Scholar 

  11. Chossegros C, Cheynet F, Blanc JL, Bourezak Z (1996) Short retromandibular approach of subcondylar fractures: clinical and radiologic long-term evaluation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 82(3):248–252

    Article  Google Scholar 

  12. Spinzia A, Patrone R, Belli E, Dell'Aversana Orabona G, Ungari C, Filiaci F et al (2012) Open reduction and internal fixation of extracapsular mandibular condyle fractures: a long-term clinical and radiological follow-up of 25 patients. BMC Surg 14:68

    Article  Google Scholar 

  13. Wilson AW, Ethunandan M, Brennan PA (2005) Transmasseteric antero-parotid approach for open reduction and internal fixation of condylar fractures. Br J Oral Maxillofac Surg 43(1):57–60

    Article  Google Scholar 

  14. Narayanan V, Ramadorai A, Ravi P, Nirvikalpa N (2012) Transmasseteric anterior parotid approach for condylar fractures: experience of 129 cases. Br J Oral Maxillofac Surg 50(5):420–424

    Article  Google Scholar 

  15. Wilk A, Biotchane I, Rosenstiel M, Charles X, Meyer C (1997) Osteosynthesis of subcondylar fractures using a rectangular 3-dimensional stabilization plate. Rev Stomatol Chir Maxillofac 98:40–44

    PubMed  Google Scholar 

  16. Meyer C, Zink S, Chatelain B, Wilk A (2008) Clinical experience with osteosynthesis of subcondylar fractures of the mandible using TCP plates. J Craniomaxillofac Surg 36(5):260–268

    Article  Google Scholar 

  17. Trost O, Abu El-Naaj I, Trouilloud P, Danino A, Malka G (2008) High cervical transmasseteric anteroparotid approach for open reduction and internal fixation of condylar fracture. J Oral Maxillofac Surg 66(1):201–204

    Article  Google Scholar 

  18. Shi D, Patil PM, Gupta R (2015) Facial nerve injuries associated with the retromandibular transparotid approach for reduction and fixation of mandibular condyle fractures. J Craniomaxillofac Surg 43(3):402–407

    Article  Google Scholar 

  19. Kanno T, Sukegawa S, Tatsumi H, Karino M, Nariai Y, Nakatani E, Furuki Y, Sekine J (2016) Does a retromandibular transparotid approach for the open treatment of condylar fractures result in facial nerve injury? J Oral Maxillofac Surg 74(10):2019–2032

    Article  Google Scholar 

  20. Imai T, Fujita Y, Motoki A, Takaoka H, Kanesaki T, Ota Y, Iwai S, Chisoku H, Ohmae M, Sumi T, Nakazawa M, Uzawa N (2019) Surgical approaches for condylar fractures related to facial nerve injury: deep versus superficial dissection. Int J Oral Maxillofac Surg 48(9):1227–1234

    Article  Google Scholar 

  21. Hwang M, Zebracki K, Chlan KM, Vogel LC (2014) Longitudinal changes in medical complications in adults with pediatric-onset spinal cord injury. J Spinal Cord Med 37(2):171–178

    Article  Google Scholar 

  22. Gellrich NC, Schoen R (2012) Condyle, ascending ramus, and coronoid process fractures. In: Ehrenfeld M, Manson PN, Prein J (eds) Principles of internal fixation of the craniomaxillofacial skeleton. Thieme, New York, pp 158–167

    Google Scholar 

  23. MacLennan W (1952) Consideration of 180 cases of typical fractures of the mandibular condylar process. Br J Plast Surg 5(2):122–128

    Article  Google Scholar 

  24. Trost O, Trouilloud P, Malka G (2009) Open reduction and internal fixation of low subcondylar fractures of mandible through high cervical transmasseteric anteroparotid approach. J Oral Maxillofac Surg 67(11):2446–2451

    Article  Google Scholar 

  25. Hanley JA, Negassa A, Edwardes MD, Forrester JE (2003) Statistical analysis of correlated data using generalized estimating equations: an orientation. Am J Epidemiol 157(4):364–375

    Article  Google Scholar 

  26. Williamson DS, Bangdiwala SI, Marshall SW, Waller AE (1996) Repeated measures analysis of binary outcomes: applications to injury research. Accid Anal Prev 28(5):571–579

    Article  Google Scholar 

  27. European Medicines Agency (2010) Guideline on Missing Data in Confirmatory Clinical Trials https://www.ema.europa.eu/en/missing-data-confirmatory-clinical-trials:1-12

  28. Handschel J, Ruggeberg T, Depprich R, Schwarz F, Meyer U, Kubler NR et al (2012) Comparison of various approaches for the treatment of fractures of the mandibular condylar process. J Craniomaxillofac Surg 40(8):e397–e401

    Article  Google Scholar 

  29. Tasanen A, Lamberg MA (1976) Transosseous wiring in the treatment of condylar fractures of the mandible. J Maxillofac Surg 4(4):200–206

    Article  Google Scholar 

  30. Mendelson BC, Freeman ME, Wu W, Huggins RJ (2008) Surgical anatomy of the lower face: the premasseter space, the jowl, and the labiomandibular fold. Aesthet Plast Surg 32(2):185–195

    Article  Google Scholar 

  31. Jones KJ (1993) Recovery from facial paralysis following crush injury of the facial nerve in hamsters: differential effects of gender and androgen exposure. Exp Neurol 121(1):133–138

    Article  Google Scholar 

  32. Yoshioka I, Tanaka T, Khanal A, Habu M, Kito S, Kodama M, Oda M, Wakasugi-Sato N, Matsumoto-Takeda S, Seta Y, Tominaga K, Sakoda S, Morimoto Y (2011) Correlation of mandibular bone quality with neurosensory disturbance after sagittal split ramus osteotomy. Br J Oral Maxillofac Surg 49(7):552–556

    Article  Google Scholar 

  33. Bruckmoser E, Bulla M, Alacamlioglu Y, Steiner I, Watzke IM (2013) Factors influencing neurosensory disturbance after bilateral sagittal split osteotomy: retrospective analysis after 6 and 12 months. Oral Surg Oral Med Oral Pathol Oral Radiol 115(4):473–482

    Article  Google Scholar 

  34. Joss CU, Thuer UW (2007) Neurosensory and functional impairment in sagittal split osteotomies: a longitudinal and long-term follow-up study. Eur J Orthod 29(3):263–271

    Article  Google Scholar 

  35. Monnazzi MS, Real-Gabrielli MF, Passeri LA, Gabrielli MA (2011) Cutaneous sensibility impairment after mandibular sagittal split osteotomy: a prospective clinical study of the spontaneous recovery. J Oral Maxillofac Surg 70(3):696–702

    Article  Google Scholar 

  36. Little RJ, D'Agostino R, Cohen ML, Dickersin K, Emerson SS, Farrar JT, Frangakis C, Hogan JW, Molenberghs G, Murphy SA, Neaton JD, Rotnitzky A, Scharfstein D, Shih WJ, Siegel JP, Stern H (2012) The prevention and treatment of missing data in clinical trials. N Engl J Med 367(14):1355–1360

    Article  Google Scholar 

  37. Coulson SE, Croxson GR, Adams RD, O'Dwyer NJ (2005) Reliability of the “Sydney,” “Sunnybrook,” and “House Brackmann” facial grading systems to assess voluntary movement and synkinesis after facial nerve paralysis. Otolaryngol Head Neck Surg 132(4):543–549

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Hiroyuki Kuragami in the Data Coordinating Center, Translational Research Center for Medical Innovation, Osaka University Hospital, for statistical consultation.

Author information

Authors and Affiliations

Authors

Contributions

Tomoaki Imai participated in all aspects of the development and completion of this research, including literature search, study design, data collection and analysis, and drafting of the manuscript. Yusei Fujita participated in literature search, data collection and analysis, and drafting of the manuscript. Hiroo Takaoka, Ayako Motoki, Tomohiko Kanesaki, Yoshiyuki Ota, and Masatoshi Ohmae collected data and critical revision of the manuscript. Hirohisa Chisoku, Tetsuro Sumi, Mitsuhiro Nakazawa, and Narikazu Uzawa contributed to data interpretation and critical revision of the manuscript. All the authors approved the final manuscript.

Corresponding author

Correspondence to Tomoaki Imai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the internal review boards of Osaka University Graduate School of Dentistry and was conducted in accordance with the Declaration of Helsinki.

Informed consent

The requirement to obtain informed consent was waived by the internal review boards because of the retrospective design.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imai, T., Fujita, Y., Takaoka, H. et al. Longitudinal study of risk for facial nerve injury in mandibular condyle fracture surgery: marginal mandibular branch-traversing classification of percutaneous approaches. Clin Oral Invest 24, 1445–1454 (2020). https://doi.org/10.1007/s00784-019-03163-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-019-03163-w

Keywords

Navigation