Skip to main content

Advertisement

Log in

In vitro and in silico evaluations of resin-based dental restorative material toxicity

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

This study aims to evaluate the cytocompatibility of three provisional restoration materials and predict neurotoxic potential of their monomers. These materials are Tab 2000® (methyl methacrylate based), ProTemp 4™ (bis-acrylic based) and Structur 3® (urethane dimethacrylate based).

Materials and methods

Resin samples were incubated in a cell culture medium and the cytotoxic effects of these extracts were studied in 3T3 fibroblast cells through MTT and crystal violet assays as well as ROS assessment. The presence of relevant leached monomers was determined by HPLC. Additionally, the blood-brain barrier (BBB) permeability to these resin-based monomers was predicted using ACD/Labs algorithms model.

Results

Cell survival rates were compared with the resin extracts, and Structur 3® was statistically significant different from the others (p < 0.001) at all-time incubation periods. All materials induced a dose-dependent loss of cell viability; however, only Structur 3 extracts were cytotoxic against 3T3 fibroblasts. The highest cytotoxic effect (77%, p < 0.001) was observed at 24 h incubation period, which may be associated with the presence of urethane dimethacrylate (UDMA) leached monomers. Furthermore, the computational model showed that most monomers under study are expectedly capable of crossing the BBB.

Conclusions

Our results showed that Structur 3® is not cytocompatible with our cell model and UDMA is a potential neurotoxic compound.

Clinical relevance

These results indicate that only ProTemp 4™ and Tab 2000® are safe for provisional restorations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rakhshan V (2015) Marginal integrity of provisional resin restoration materials: a review of the literature. Saudi J Dent Res 6:33–40. https://doi.org/10.1016/j.sjdr.2014.03.002

    Article  Google Scholar 

  2. Burns DR, Beck DA, Nelson SK (2003) A review of selected dental literature on contemporary provisional fixed prosthodontic treatment: report of the Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. J Prosthet Dent 90:474–497. https://doi.org/10.1016/S0022-3913(03)00259-2

    Article  PubMed  Google Scholar 

  3. Ferracane JL (2011) Resin composite - state of the art. Dent Mater 27:29–38. https://doi.org/10.1016/j.dental.2010.10.020

    Article  PubMed  Google Scholar 

  4. Zabrovsky A, Beyth N, Pietrokovski Y, et al (2017) 5 – Biocompatibility and functionality of dental restorative materials. In: Shelton R (ed) Biocompatibility of dental biomaterials. Woodhead Publishing Series in Biomaterials, pp 63–75

  5. Gautam R, Singh RD, Sharma VP et al (2012) Biocompatibility of polymethylmethacrylate resins used in dentistry. J Biomed Mater Res Part B Appl Biomater 100B:1444–1450. https://doi.org/10.1002/jbm.b.32673

    Article  Google Scholar 

  6. Wataha JC (2012) Predicting clinical biological responses to dental materials. Dent Mater 28:23–40. https://doi.org/10.1016/j.dental.2011.08.595

    Article  PubMed  Google Scholar 

  7. Schmalz G, Galler KM (2017) Biocompatibility of biomaterials – lessons learned and considerations for the design of novel materials. Dent Mater 33:382–393. https://doi.org/10.1016/j.dental.2017.01.011

    Article  PubMed  Google Scholar 

  8. Luthardt RG, Stößel M, Hinz M, Vollandt R (2000) Clinical performance and periodontal outcome of temporary crowns and fixed partial dentures: a randomized clinical trial. J Prosthet Dent 83:32–39. https://doi.org/10.1016/S0022-3913(00)70086-2

    Article  PubMed  Google Scholar 

  9. Van Landuyt KL, Nawrot T, Geebelen B et al (2011) How much do resin-based dental materials release? A meta-analytical approach. Dent Mater 27:723–747. https://doi.org/10.1016/j.dental.2011.05.001

    Article  PubMed  Google Scholar 

  10. Sideridou ID, Achilias DS (2005) Elution study of unreacted Bis-GMA, TEGDMA, UDMA, and Bis-EMA from light-cured dental resins and resin composites using HPLC. J Biomed Mater Res Part B Appl Biomater 74B:617–626. https://doi.org/10.1002/jbm.b.30252

    Article  Google Scholar 

  11. Labban N, Song F, Al-Shibani N, Windsor LJ (2008) Effects of provisional acrylic resins on gingival fibroblast cytokine/growth factor expression. J Prosthet Dent 100:390–397. https://doi.org/10.1016/S0022-3913(08)60242-5

    Article  PubMed  Google Scholar 

  12. Borzangy S, Labban N, Windsor LJ (2013) Effects of interim acrylic resins on the expression of cytokines from epithelial cells and on collagen degradation. J Prosthet Dent 110:296–302. https://doi.org/10.1016/S0022-3913(13)60379-0

    Article  PubMed  Google Scholar 

  13. Donaldson D (1974) The etiology of gingival recession associated with temporary crowns. J Periodontol 45:468–471. https://doi.org/10.1902/jop.1974.45.7.468

    Article  PubMed  Google Scholar 

  14. Sigusch BW, Pflaum T, Völpel A, Gretsch K, Hoy S, Watts DC, Jandt KD (2012) Resin-composite cytotoxicity varies with shade and irradiance. Dent Mater 28:312–319. https://doi.org/10.1016/j.dental.2011.12.007

    Article  PubMed  Google Scholar 

  15. Ulker M, Ulker HE, Zortuk M, Bulbul M, Tuncdemir AR, Bilgin MS (2009) Effects of current provisional restoration materials on the viability of fibroblasts. Eur J Dent 3:114–119

    Article  Google Scholar 

  16. Ergün G, Mutlu-Sagesen L, Karaoglu T, Dogan A (2001) Cytotoxicity of provisional crown and bridge restoration materials: an in vitro study. J Oral Sci 43:123–128

    Article  Google Scholar 

  17. Quinlan CA, Zisterer DM, Tipton KF, O’Sullivan MI (2002) In vitro cytotoxicity of a composite resin and compomer. Int Endod J 35:47–55. https://doi.org/10.1046/j.1365-2591.2002.00456.x

    Article  PubMed  Google Scholar 

  18. ISO 10993-5 (2009) Biological evaluation of medical devices - part 5: tests for in vitro cytotoxicity. International Organization for Standardization, Geneva

    Google Scholar 

  19. ISO 7405 (2018) Dentistry - Evaluation of biocompatibility of medical devices used in dentistry. International Organization for Standardization, Geneva

    Google Scholar 

  20. Leggat PA, Kedjarune U (2003) Toxicity of methyl methacrylate in dentistry. Int Dent J 53:126–131. https://doi.org/10.1111/j.1875-595X.2003.tb00736.x

    Article  PubMed  Google Scholar 

  21. Rajaniemi R (1986) Clinical evaluation of occupational toxicity of methylmethacrylate monomer to dental technicians. J Soc Occup Med 36:56–59. https://doi.org/10.1093/occmed/36.4.56

    Article  PubMed  Google Scholar 

  22. Cornhill JF, Levesque MJ, Herderick EE et al (1980) Quantitative study of the rabbit aortic endothelium using vascular casts. Atherosclerosis 35:321–337. https://doi.org/10.1016/0021-9150(80)90130-6

    Article  PubMed  Google Scholar 

  23. Sugaya Y, Sakamoto N, Ohashi T, Sato M (2003) Elongation and random orientation of bovine endothelial cells in response to hydrostatic pressure: comparison with response to shear stress. JSME Int J Ser C 46:1248–1255. https://doi.org/10.1299/jsmec.46.1248

    Article  Google Scholar 

  24. Gul P, Miloglu FD, Akgul N (2014) HPLC Analysis of eluted monomers from dental composite using different immersion media. J Liq Chromatogr Relat Technol 37:155–170. https://doi.org/10.1080/10826076.2012.738619

    Article  Google Scholar 

  25. Lanevskij K, Dapkunas J, Juska L, Japertas P, Didziapetris R (2011) QSAR analysis of blood–brain distribution: the influence of plasma and brain tissue binding. J Pharm Sci 100:2147–2160. https://doi.org/10.1002/jps.22442

    Article  PubMed  Google Scholar 

  26. Lanevskij K, Japertas P, Didziapetris R, Petrauskas A (2009) Ionization-specific QSAR models of blood-brain penetration of drugs. Chem Biodivers 6:2050–2054. https://doi.org/10.1002/cbdv.200900079

    Article  PubMed  Google Scholar 

  27. Ritz C, Streibig JC (2007) Bioassay analysis using R. J Stat Softw 12:1–22. https://doi.org/10.18637/jss.v012.i05

    Article  Google Scholar 

  28. Bettencourt AF, Neves CB, de Almeida MS, Pinheiro LM, Oliveira SA, Lopes LP, Castro MF (2010) Biodegradation of acrylic based resins: a review. Dent Mater 26:e171–e180. https://doi.org/10.1016/j.dental.2010.01.006

    Article  PubMed  Google Scholar 

  29. Bakopoulou A, Papadopoulos T, Garefis P (2009) Molecular toxicology of substances released from resin–based dental restorative materials. Int J Mol Sci 10:3861–3899. https://doi.org/10.3390/ijms10093861

    Article  PubMed  PubMed Central  Google Scholar 

  30. Goldberg M (2008) In vitro and in vivo studies on the toxicity of dental resin components: a review. Clin Oral Investig 12:1–8. https://doi.org/10.1007/s00784-007-0162-8

    Article  PubMed  Google Scholar 

  31. Gupta SK, Saxena P, Pant VA, Pant AB (2012) Release and toxicity of dental resin composite. Toxicol Int 19:225–234. https://doi.org/10.4103/0971-6580.103652

    Article  PubMed  PubMed Central  Google Scholar 

  32. Volk J, Engelmann J, Leyhausen G, Geurtsen W (2006) Effects of three resin monomers on the cellular glutathione concentration of cultured human gingival fibroblasts. Dent Mater 22:499–505. https://doi.org/10.1016/j.dental.2005.06.002

    Article  PubMed  Google Scholar 

  33. Reichl F-X, Esters M, Simon S, Seiss M, Kehe K, Kleinsasser N, Folwaczny M, Glas J, Hickel R (2006) Cell death effects of resin-based dental material compounds and mercurials in human gingival fibroblasts. Arch Toxicol 80:370–377. https://doi.org/10.1007/s00204-005-0044-2

    Article  PubMed  Google Scholar 

  34. Engelmann J, Janke V, Volk J, Leyhausen G, von Neuhoff N, Schlegelberger B, Geurtsen W (2004) Effects of BisGMA on glutathione metabolism and apoptosis in human gingival fibroblasts in vitro. Biomaterials 25:4573–4580. https://doi.org/10.1016/j.biomaterials.2003.11.048

    Article  PubMed  Google Scholar 

  35. Chang H-H, Chang M-C, Wang H-H, Huang GF, Lee YL, Wang YL, Chan CP, Yeung SY, Tseng SK, Jeng JH (2014) Urethane dimethacrylate induces cytotoxicity and regulates cyclooxygenase-2, hemeoxygenase and carboxylesterase expression in human dental pulp cells. Acta Biomater 10:722–731. https://doi.org/10.1016/j.actbio.2013.10.006

    Article  PubMed  Google Scholar 

  36. Kleinsasser NH, Schmid K, Sassen AW, Harréus UA, Staudenmaier R, Folwaczny M, Glas J, Reichl FX (2006) Cytotoxic and genotoxic effects of resin monomers in human salivary gland tissue and lymphocytes as assessed by the single cell microgel electrophoresis (Comet) assay. Biomaterials 27:1762–1770. https://doi.org/10.1016/j.biomaterials.2005.09.023

    Article  PubMed  Google Scholar 

  37. Schweikl H, Schmalz G, Spruss T (2001) The induction of micronuclei in vitro by unpolymerized resin monomers. J Dent Res 80:1615–1620. https://doi.org/10.1177/00220345010800070401

    Article  PubMed  Google Scholar 

  38. Wisniewska-Jarosinska M, Poplawski T, Chojnacki CJ, Pawlowska E, Krupa R, Szczepanska J, Blasiak J (2011) Independent and combined cytotoxicity and genotoxicity of triethylene glycol dimethacrylate and urethane dimethacrylate. Mol Biol Rep 38:4603–4611. https://doi.org/10.1007/s11033-010-0593-1

    Article  PubMed  Google Scholar 

  39. Durner J, Wellner P, Hickel R, Reichl FX (2012) Synergistic interaction caused to human gingival fibroblasts from dental monomers. Dent Mater 28:818–823. https://doi.org/10.1016/j.dental.2012.04.031

    Article  PubMed  Google Scholar 

  40. Siqueira Gonçalves T, Minghelli Schmitt V, Thomas M, Lopes de Souza MA, Macedo de Menezes L (2008) Cytotoxicity of two autopolymerized acrylic resins used in orthodontics. Angle Orthod 78:926–930. https://doi.org/10.2319/072407-343.1

    Article  PubMed  Google Scholar 

  41. Pupo YM, Bernardo CF, de Souza FFFA et al (2017) Cytotoxicity of etch-and-rinse, self-etch, and universal dental adhesive systems in fibroblast cell line 3T3. Scanning 2017:1–7. https://doi.org/10.1155/2017/9650420

    Article  Google Scholar 

  42. Olivier A, Grobler SR, Osman Y (2012) Cytotoxicity of seven recent dentine bonding agents on mouse 3T3 fibroblast cells. Open J Stomatol 02:244–250. https://doi.org/10.4236/ojst.2012.24043

    Article  Google Scholar 

  43. Kurt A, Altintas SH, Kiziltas MV, Tekkeli SE, Guler EM, Kocyigit A, Usumez A (2018) Evaluation of residual monomer release and toxicity of self-adhesive resin cements. Dent Mater J 37:40–48. https://doi.org/10.4012/dmj.2016-380

    Article  PubMed  Google Scholar 

  44. Diomede F, Caputi S, Merciaro I, Frisone S, D'Arcangelo C, Piattelli A, Trubiani O (2014) Pro-inflammatory cytokine release and cell growth inhibition in primary human oral cells after exposure to endodontic sealer. Int Endod J 47:864–872. https://doi.org/10.1111/iej.12230

    Article  PubMed  Google Scholar 

  45. Yoshii E (1997) Cytotoxic effects of acrylates and methacrylates: relationships of monomer structures and cytotoxicity. J Biomed Mater Res 37:517–524. https://doi.org/10.1002/(SICI)1097-4636(19971215)37:4<517::AID-JBM10>3.0.CO;2-5

    Article  PubMed  Google Scholar 

  46. Geurtsen W, Lehmann F, Spahl W, Leyhausen G (1998) Cytotoxicity of 35 dental resin composite monomers/additives in permanent 3T3 and three human primary fibroblast cultures. J Biomed Mater Res 41:474–480. https://doi.org/10.1002/(SICI)1097-4636(19980905)41:3<474::AID-JBM18>3.0.CO;2-I

    Article  PubMed  Google Scholar 

  47. Walters NJ, Xia W, Salih V, Ashley PF, Young AM (2016) Poly(propylene glycol) and urethane dimethacrylates improve conversion of dental composites and reveal complexity of cytocompatibility testing. Dent Mater 32:264–277. https://doi.org/10.1016/j.dental.2015.11.017

    Article  PubMed  Google Scholar 

  48. Rose EC, Bumann J, Jonas IE, Kappert HF (2000) Contribution to the biological assessment of orthodontic acrylic materials. Measurement of their residual monomer output and cytotoxicity. J Orofac Orthop / Fortschritte der Kieferorthopädie 61:246–257. https://doi.org/10.1007/s000560050010

    Article  PubMed  Google Scholar 

  49. Schulz SD, Laquai T, Kümmerer K et al (2015) Elution of monomers from provisional composite materials. Int J Polym Sci 2015:1–7. https://doi.org/10.1155/2015/617407

    Article  Google Scholar 

  50. Moharamzadeh K, Van Noort R, Brook IM, Scutt AM (2007) HPLC analysis of components released from dental composites with different resin compositions using different extraction media. J Mater Sci Mater Med 18:133–137. https://doi.org/10.1007/s10856-006-0671-z

    Article  PubMed  Google Scholar 

  51. Ferracane JL (1994) Elution of leachable components from composites. J Oral Rehabil 21:441–452. https://doi.org/10.1111/j.1365-2842.1994.tb01158.x

    Article  PubMed  Google Scholar 

  52. Altintas SH, Usumez A (2008) Evaluation of monomer leaching from a dual cured resin cement. J Biomed Mater Res Part B Appl Biomater 86B:523–529. https://doi.org/10.1002/jbm.b.31052

    Article  Google Scholar 

  53. Bouillaguet S, Shaw L, Gonzalez L, Wataha JC, Krejci I (2002) Long-term cytotoxicity of resin-based dental restorative materials. J Oral Rehabil 29:7–13. https://doi.org/10.1046/j.1365-2842.2002.00804.x

    Article  PubMed  Google Scholar 

  54. Mohsen NM, Craig RG, Hanks CT (1998) Cytotoxicity of urethane dimethacrylate composites before and after aging and leaching. J Biomed Mater Res 39:252–260. https://doi.org/10.1002/(SICI)1097-4636(199802)39:2<252::AID-JBM12>3.0.CO;2-F

    Article  PubMed  Google Scholar 

  55. Lefebvre CA, Knoernschild KL, Schuster GS (1994) Cytotoxicity of eluates from light-polymerized denture base resins. J Prosthet Dent 72:644–650. https://doi.org/10.1016/0022-3913(94)90298-4

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Teresa Calejo for the critical revision of the manuscript. The authors are also grateful to Mário Diniz for making the fluorescence microplate reader available for ROS assessment.

Funding

This work was partially supported by FCT—Fundação para a Ciência e a Tecnologia projects—PTDC/SAU-BMA/122444/2010 and PTDC/BIM-MEC/6631/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Barahona.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article this not contain any studies with human participants or animals perform by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandarra, S., Mascarenhas, P., Luís, A.R. et al. In vitro and in silico evaluations of resin-based dental restorative material toxicity. Clin Oral Invest 24, 2691–2700 (2020). https://doi.org/10.1007/s00784-019-03131-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-019-03131-4

Keywords

Navigation