Skip to main content

Advertisement

Log in

Improvement of bone repair with l-PRF and bovine bone in calvaria of rats. histometric and immunohistochemical study

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The effect of leucocyte- and platelet-rich fibrin (L-PRF), associated with DBBM (deproteinized bovine bone mineral; Bio-Oss®) was investigated and compared with autogenous bone graft as a standard material for filling bone defects.

Material and methods

A defect of 5 mm in diameter was performed in 40 calvaria of rats. The animals were divided into 5 groups and received blood clot (CO), autogenous bone (AUT), DBBM (BIO), L-PRF, or DBBM associated with L-PRF (BIO-LPRF). After 4 and 8 weeks, bone regeneration was assessed by histometric and immunohistochemical analyses.

Results

The highest mean percentage of bone formation found at 4 and 8 weeks was observed for the BIO-L-PRF group (54.0% ± 2.8 and 63.6% ± 2.2). The lowest mean percentage at 4 and 8 weeks was observed for the CO group (16.7% ± 2.5 and 20.5% ± 1.0). There was statistical similarity among the AUT, BIO, and L-PRF groups. The expressions OC, RUNX 2, and VEGF showed a favorable aspect in the formation of new bone for BIO-L-PRF. VEGF was the marker with the highest expression because it was related to the initial healing process, promoting the migration and proliferation of endothelial cells in the region of the defect. Even after weeks, VEGF maintained a moderate expression.

Conclusions

The association of L-PRF with DBBM improved bone repair when these biomaterials were inserted into the defects of the calvaria of rats.

Clinical relevance

This reinforces the good performance of bovine bone and L-PRF as filler materials, especially when associated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kim DM, Nevins ML, Zhao L, Fateh A, Kim SW, Schupbach P, Nevins M (2013) The clinical and histologic outcome of dental implant in large ridge defect regenerated with alloplast: a randomized controlled preclinical trial. J Oral Implantol 39(2):148–153

    PubMed  Google Scholar 

  2. Tetè S, Vinci R, Zizzari VL, Zara S, La Scala V, Cataldi A, Gherlone E, Piatelli A (2013) Maxillary sinus augmentation procedures through equine-derived biomaterial or calvaria autologous bone: immunohistochemical evaluation of OPG/RANKL in humans. Eur J Histochem 57(1):60–65

    Google Scholar 

  3. Kolk A, Handschel J, Drescher W, Rothamel D, Kloss F, Blessmann M, Heiland M, Wolff KD, Smeets R (2012) Current trends and future perspectives of bone substitute materials e from space holders to innovative biomaterials. J Craniomaxillofac Surg 40:706–718

    PubMed  Google Scholar 

  4. Orsini G, Traini T, Scarano A, Degidi M, Perrotti V, Piccirilli M, Piattelli A (2005) Maxillary sinus augmentation with Bio-Oss particles: light, scanning and transmission electron microscopy study in man. J Biomed Mater Res 74B(1):448–457

    Google Scholar 

  5. Dahlin C, Simion M, Hatano N (2009) Long term follow up on soft and hard tissue levels following guided bone regeneration treatment in combination with a xenogenic filling material: a 5 years prospective clinical study. Clin Implant Dent 12:263–270

    Google Scholar 

  6. Galindo-Moreno P, Moreno-Riestra I, Ávila G, Fernandez-Barbeiro JE, Auilar FMM, Wang HL, O’Valle F (2010) Histomorphometric comparison of maxillary pristine bone and composite bone graft biopsies obtained after sinus augmentation. Clin Oral Implants Res 21(1):122–128

    PubMed  Google Scholar 

  7. Jensen T, Schou S, Stavropoulos A, Terheyden H, Holmstrup P (2012) Maxillary sinus floor augmentation with Bio-Oss or Bio-Oss mixed with autogenous bone as graft in animals: a systematic review. Int J Oral Maxilofac Surg 41:114–120

    Google Scholar 

  8. Mladenovic Z, Sahlin-Platt A, Andersson B, Johansson A, Ransjö EBM (2013) In vitro study of the biological interface of Bio-Oss: implications of the experimental setup. Clin Oral Implants Res 24(3):329–335

    PubMed  Google Scholar 

  9. Ehrenfest DMD, Doglioli P, de Peppo GM, Del Corso M, Charrier JB (2010) Choukroun’s platelet-rich fibrin (PRF) stimulates in vitro proliferation and differentiation of human oral bone mesenchymal stem cell in a dose dependent way. Arch Oral Biol 55(3):185–194

    Google Scholar 

  10. Messora MR, Nagata MJH, Mariano RC, Dornelles RCM, Bomfim SRM, Fucini SE, Garcia VG, Bosco AF (2007) Bone healing in critical-size defects treated with platelet-rich plasma: a histologic and histometric study in rat calvaria. J Periodontal Res 43(2):217–223

    Google Scholar 

  11. Anitua E, Sánchez M, Nurden AT, Nurden P, Orive G, Andía I (2006) New insights into and novel applications for platelet-rich fibrin therapies. Trends Biotechnol 24(5):227–234

    PubMed  Google Scholar 

  12. Choukroun J, Diss A, Simonpieri A, Girard MO, Schoeffler C, Dohan SL, Dohan AJJ, Mouhyi J, Dohan DM (2006) Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part V: histologic evaluations of PRF effects on bone allograft maturation in sinus lift. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101(3):299–303

    PubMed  Google Scholar 

  13. He L, Lin Y, Hu X, Zhang Y, Wu Y (2009) A comparative study of platelet-rich fibrin (PRF) and platelet-rich plasma (PRP) on the effect of proliferation and differentiation of a rat osteoblasts in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108(5):707–713

    PubMed  Google Scholar 

  14. Roy S, Driggs J, Elgharably H, Biswas S, Findley M, Khanna S, Gnyawali U, Bergdall VK, Sem CK (2011) Platelet-rich matrix improves wound angiogenesis via inducing endothelial cell proliferation. Wound Repair Regen 19(6):753–766

    PubMed  PubMed Central  Google Scholar 

  15. Singh A, Kohli M, Gupta N (2012) Platelet-rich fibrin: a novel approach for osseous regeneration. J Maxillofac Oral Surg 11(4):430–434

    PubMed  PubMed Central  Google Scholar 

  16. Franceschi RT, Xiao G, Jiang D, Gopalakrishnan R, Yang S, Reith E (2003) Multiple signaling pathways converge on the Cbfa1/RUNX 2 transcription factor to regulate osteoblast differentiation. Connect Tissue Res 44(1):109–162

    PubMed  PubMed Central  Google Scholar 

  17. Pereira RS, Gorla LF, Boos FBJD, Okamoto R, Garcia Júnior IR, Hochuli-Vieira E (2017) Use of autogenous bone and beta-tricalcium phosphate in maxillary sinus lifting: histomorphometric study and immunohistochemical assessment of RUNX 2 and VEGF. Int J Oral Maxillofac Surg 46(4):503–510

    PubMed  Google Scholar 

  18. Xiao G, Jiang D, Gopalakrishnan R, Franceschi RT (2002) Fibroblast growth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfa1/RUNX2. J Biol Chem 277(39):36181–36187

    PubMed  Google Scholar 

  19. Kobayashi Y, Takagi H, Sakai H, Hashimoto F, Mataki S, Kobayashi K, Kato Y (1998) Effects of local administration of osteocalcin on experimental tooth movement. Angle Orthod 68(3):259–266

    PubMed  Google Scholar 

  20. Silva AC, Oliveira MR, Amaral LFA, Ferreira S, Garcia IR Jr, Mariano RC (2016) Effect of doxycycline in gel form in regeneration bone: histomorphometric and tomographic study in rats calvary. J Periodontol 87:74–82

    PubMed  Google Scholar 

  21. Oliveira MR, deC Silva A, Ferreira S, Avelino CC, Garcia IR Jr, Mariano RC (2015) Influence of the association between plaquet-richfibrin and bovine bone on bone regeneration. A histomorphometric study in the calvaria of rats. Int J Oral Maxillofac Surg 44(5):649–655

    PubMed  Google Scholar 

  22. Dohan DM, de Peppo GM, Doglioli P, Sammartino G (2009) Slow release of growth factors and thrombospondin-1 in Choukroun’s platelet-rich fibrin (PRF): a gold standard to achieve for all surgical platelet concentrates technologies. Growth Factors 27(1):63–69

    Google Scholar 

  23. Melo LGN, Nagata MJH, Bosco AF, Ribeiro LLG, Leite CM (2005) Bone healing in surgically created defects treated with either bioactive glass particles, a calcium sulfate barrier, or a combination of both materials. A histological and histometric study in rat tibias. Clin Oral Implants Res 16(6):683–691

    PubMed  Google Scholar 

  24. Pedrosa WF Jr, Okamoto R, Faria PE, Arnez MF, Xavier SP, Salata LA (2009) Immunohistochemical, tomographic and histological study on onlay bone grafts remodeling. Part II: calvarial bone. Clin Oral Implants Res 20(11):1254–1264

    PubMed  Google Scholar 

  25. Dempster DW, Compston JEC, Drezner MK, Glorieux FH, Kanis JÁ, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res 28(1):1–16

    Google Scholar 

  26. Mariano RC, Messora MR, de Morais A, Nagata MJ, Furlaneto F, Avelino CC (2010) Bone healing in critical-size defects treated with platelet-rich plasma: a histologic and histometric study in the calvaria of diabetic rat. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109:72–78

    PubMed  Google Scholar 

  27. Fabris ALS, Faverani LP, Gomes-Ferreira PHS, Polo TOB, Santiago-Jr JF, Okamoto R (2018) Bone repair access of BoneCeramicTM in 5-mm defects. Study on rat calvaria. J Appl Oral Sci 26:1–12

    Google Scholar 

  28. Histing T, Garcia P, Holteins JH et al (2011) Small animal bone healing models: standards, tips, and pitfalls results of a consensus meeting. Bone 49(4):591–599

    PubMed  Google Scholar 

  29. Sohn JY, Park JC, Um YJ, Jung UW, Kim CS, Cho KS, Choi SH (2010) Spontaneous healing capacity of rabbit cranial defects of various sizes. J Periodontal Implant Sci 40(4):180–187

    PubMed  PubMed Central  Google Scholar 

  30. Thorat M, Pradeep AR, Pallavi B (2011) Clinical effect of autologous platelet-rich fibrin in the treatment of intra-bony defects: a controlled clinical trial. J Clin Periodontol 38(10):925–932

    PubMed  Google Scholar 

  31. Sharma A, Pradeep AR (2011) Treatment of 3-wall intrabony defects in patients with chronic periodontitis with autologous platelet-rich fibrin: a randomized controlled clinical trial. J Periodontol 82:1705–1712

    PubMed  Google Scholar 

  32. Peck MT, Marnewick J, Stephen L (2011) Alveolar ridge preservation using leukocyte and plate-let-rich fibrin: a report of a case. Case Rep Dent 2011:1–5

    Google Scholar 

  33. Inchingolo F, Tatullo M, Marrelli M, Inchingolo AM, Scacco S, Inchingolo AD et al (2010) Trial with platelet-rich fibrin and Bio-Oss used as grafting materials in the treatment of the severe maxillar bone atrophy: clinical and radiological evaluations. Eur Rev Med Pharmacol Sci 14:1075–1084

    PubMed  Google Scholar 

  34. Zhang Y, Tangl S, Huber CD, Lin Y, Qiu L, Rausch-Fan X (2012) Effects of Choukroun’s platelet-rich fibrin on bone regeneration in combination with deproteinized bovine bone mineral in maxillary sinus augmentation. A histological and histomorphometric study. J Craniomaxillofac Surg 40:321–328

    PubMed  Google Scholar 

  35. Pripatnanont P, Nuntanaranont T, Vong-vatcharanon S, Phurisat K (2013) The primacy of platelet-rich fibrin on bone regeneration of various grafts in rabbit’s calvarial defects. J Craniomaxillofac Surg 41(8):191–200

    Google Scholar 

  36. Mordenfeld A, Hallman M, Johansson CB, Albrektsson T (2010) Histological and histomorphometrical analyses of biopsies harvested 11 years after maxillary sinus floor augmentation with deproteinized bovine and autogenous bone. Clin Oral Implants Res 21(9):961–970

    PubMed  Google Scholar 

  37. Kolerman R, Samorodnitzki-Naveh GR, Barnea E, Tal H (2012) Histomorphometric analysis of newly formed bone after bilateral maxillary sinus augmentation using two different osteoconductive materials and internal collagen membrane. Int J Periodontics Restorative Dent 32:e21–e28

    PubMed  Google Scholar 

  38. Lee DZ, Chen ST, Darby IB (2012) Maxillary sinus floor elevation and grafting with deproteinized bovine bone mineral: a clinical and histomorphometric study. Clin Oral Implants Res 23:918–924

    PubMed  Google Scholar 

  39. Caubet J, Ramis JM, Ramos-Murguialday M, Morey MA, Monjo M (2015) Gene expression and morphometric parameters of human bone biopsies after maxillary sinus floor elevation with autologous bone combined with Bio-Oss or BoneCeramic. Clin Oral Implants Res 26(6):727–735

    PubMed  Google Scholar 

  40. Schilephake H (2002) Bone growth factors in maxillofacial skeletal reconstruction. Int J Oral Maxillofac Surg 31:469–484

    PubMed  Google Scholar 

  41. Marx RE (2004) Platelet-rich plasma: evidence to support its use. J Oral Maxillofac Surg 62:489–496

    PubMed  Google Scholar 

  42. Ehrenfest DMD, Del Corso M, Diss A, Mouhyi J, Charrier JB (2010) Three dimensional architecture and cell composition of a Choukroun’s platelet-rich fibrin clot and membrane. J Periodontol 81(4):546–555

    Google Scholar 

Download references

Funding

The work was supported by the Department of Surgery and Clinic of the University of Alfenas, Brazil, by the Dentistry Science Master Program, Unifal-MG, Brazil and CAPES (Coordination for Higher Education Staff Development).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronaldo Célio Mariano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article contains studies with animals performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This study was approved by the Committee on Ethics in the Use of Animals (CEUA-Unifal-MG) under the number 22/2017.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Lago, E.S., Ferreira, S., Garcia, I.R. et al. Improvement of bone repair with l-PRF and bovine bone in calvaria of rats. histometric and immunohistochemical study. Clin Oral Invest 24, 1637–1650 (2020). https://doi.org/10.1007/s00784-019-03018-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-019-03018-4

Keywords

Navigation