Skip to main content

Advertisement

Log in

In vivo reliability of 3D cephalometric landmark determination on magnetic resonance imaging: a feasibility study

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

3D cephalometric analysis performed on cone-beam or multi-slice computed tomography (CBCT, MSCT) has superior diagnostic value compared to 2D cephalometry based on radiographs. However, this comes at the expense of increased radiation risks for the predominantly young patients. Magnetic resonance imaging (MRI) has the potential to overcome this diagnostic dilemma but has not been established for 3D cephalometry so far. Since landmark reliability forms the basis for 3D cephalometry, we evaluated the in vivo reliability of established 3D landmarks using MRI.

Materials and methods

Sixteen orthodontic patients underwent MRI at 3 Tesla using a 0.5 mm 3D sequence. On each MRI scan, 44 cephalometric landmarks were determined. Image analysis was performed twice by two independent observers. Intra- and inter-rater agreement was assessed by mean measurement errors and intraclass correlation coefficients (ICCs). Measurement errors were calculated as Euclidean distances and distances for x-, y-, and z-coordinates.

Results

Overall, MRI-based 3D cephalometric landmarks revealed a high reliability comparable to prior in vivo studies using CBCT/MSCT. Intra- and inter-rater ICCs were consistently higher than 0.9. Intra-rater comparisons showed mean measurement differences (ranges) of 0.87 mm (0.41–1.63) for rater I and 0.94 mm (0.49–1.28) for rater II. Average inter-rater difference was 1.10 mm (0.52–2.29). Distinct differences in reliability between the various landmarks were observed, corresponding well with the landmarks’ specific shapes.

Conclusions

The present study demonstrates that MRI enables reliable determination of 3D cephalometric landmarks in vivo.

Clinical relevance

This study emphasizes the potential of MRI to perform treatment planning and monitoring in orthodontics as well as oral and maxillofacial surgery without radiation exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baumrind S, Frantz RC (1971) The reliability of head film measurements. 1. Landmark identification. Am J Orthod 60(2):111–127

    Article  PubMed  Google Scholar 

  2. Baumrind S, Frantz RC (1971) The reliability of head film measurements. 2. Conventional angular and linear measures. Am J Orthod 60(5):505–517

    Article  PubMed  Google Scholar 

  3. Moyers RE, Bookstein FL (1979) The inappropriateness of conventional cephalometrics. Am J Orthod 75(6):599–617

    Article  PubMed  Google Scholar 

  4. Ahlqvist J, Eliasson S, Welander U (1986) The effect of projection errors on cephalometric length measurements. Eur J Orthod 8(3):141–148

    Article  PubMed  Google Scholar 

  5. Park SH, Yu HS, Kim KD, Lee KJ, Baik HS (2006) A proposal for a new analysis of craniofacial morphology by 3-dimensional computed tomography. Am J Orthod Dentofac Orthop 129(5):600 e623–600 e634. https://doi.org/10.1016/j.ajodo.2005.11.032

    Article  Google Scholar 

  6. Stratemann SA, Huang JC, Maki K, Miller AJ, Hatcher DC (2008) Comparison of cone beam computed tomography imaging with physical measures. Dentomaxillofac Radiol 37(2):80–93. https://doi.org/10.1259/dmfr/31349994

    Article  PubMed  Google Scholar 

  7. Periago DR, Scarfe WC, Moshiri M, Scheetz JP, Silveira AM, Farman AG (2008) Linear accuracy and reliability of cone beam CT derived 3-dimensional images constructed using an orthodontic volumetric rendering program. Angle Orthod 78(3):387–395. https://doi.org/10.2319/122106-52.1

    Article  PubMed  Google Scholar 

  8. Hassan B, van der Stelt P, Sanderink G (2009) Accuracy of three-dimensional measurements obtained from cone beam computed tomography surface-rendered images for cephalometric analysis: influence of patient scanning position. Eur J Orthod 31(2):129–134. https://doi.org/10.1093/ejo/cjn088

    Article  PubMed  Google Scholar 

  9. Olmez H, Gorgulu S, Akin E, Bengi AO, Tekdemir I, Ors F (2011) Measurement accuracy of a computer-assisted three-dimensional analysis and a conventional two-dimensional method. Angle Orthod 81(3):375–382. https://doi.org/10.2319/070810-387.1

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gribel BF, Gribel MN, Frazao DC, McNamara JA Jr, Manzi FR (2011) Accuracy and reliability of craniometric measurements on lateral cephalometry and 3D measurements on CBCT scans. Angle Orthod 81(1):26–35. https://doi.org/10.2319/032210-166.1

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gribel BF, Gribel MN, Manzi FR, Brooks SL, McNamara JA Jr (2011) From 2D to 3D: an algorithm to derive normal values for 3-dimensional computerized assessment. Angle Orthod 81(1):3–10. https://doi.org/10.2319/032910-173.1

    Article  PubMed  PubMed Central  Google Scholar 

  12. Damstra J, Fourie Z, De Wit M, Ren Y (2012) A three-dimensional comparison of a morphometric and conventional cephalometric midsagittal planes for craniofacial asymmetry. Clin Oral Investig 16(1):285–294. https://doi.org/10.1007/s00784-011-0512-4

    Article  PubMed  Google Scholar 

  13. Shin SM, Kim YM, Kim NR, Choi YS, Park SB, Kim YI (2016) Statistical shape analysis-based determination of optimal midsagittal reference plane for evaluation of facial asymmetry. Am J Orthod Dentofac Orthop 150(2):252–260. https://doi.org/10.1016/j.ajodo.2016.01.017

    Article  Google Scholar 

  14. Pauwels R, Beinsberger J, Collaert B, Theodorakou C, Rogers J, Walker A, Cockmartin L, Bosmans H, Jacobs R, Bogaerts R, Horner K, Consortium SP (2012) Effective dose range for dental cone beam computed tomography scanners. Eur J Radiol 81(2):267–271. https://doi.org/10.1016/j.ejrad.2010.11.028

    Article  Google Scholar 

  15. Pauwels R, Cockmartin L, Ivanauskaité D, Urbonienė A, Gavala S, Donta C, Tsiklakis K, Jacobs R, Bosmans H, Bogaerts R, Horner K, Consortium S (2014) Estimating cancer risk from dental cone-beam CT exposures based on skin dosimetry. Phys Med Biol 59(14):3877–3891. https://doi.org/10.1088/0031-9155/59/14/3877

    Article  PubMed  Google Scholar 

  16. American Academy of Oral and Maxillofacial Radiology (2013) Clinical recommendations regarding use of cone beam computed tomography in orthodontics. [corrected]. Position statement by the American Academy of Oral and Maxillofacial Radiology. Oral Surg Oral Med Oral Pathol Oral Radiol 116(2):238–257. https://doi.org/10.1016/j.oooo.2013.06.002

  17. Pittayapat P, Limchaichana-Bolstad N, Willems G, Jacobs R (2014) Three-dimensional cephalometric analysis in orthodontics: a systematic review. Orthod Craniofacial Res 17(2):69–91. https://doi.org/10.1111/ocr.12034

    Article  Google Scholar 

  18. Goto TK, Nishida S, Nakamura Y, Tokumori K, Nakamura Y, Kobayashi K, Yoshida Y, Yoshiura K (2007) The accuracy of 3-dimensional magnetic resonance 3D vibe images of the mandible: an in vitro comparison of magnetic resonance imaging and computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103(4):550–559. https://doi.org/10.1016/j.tripleo.2006.03.011

    Article  PubMed  Google Scholar 

  19. Juerchott A, Saleem MA, Hilgenfeld T, Freudlsperger C, Zingler S, Lux CJ, Bendszus M, Heiland S (2018) 3D cephalometric analysis using magnetic resonance imaging: validation of accuracy and reproducibility. Sci Rep 8(1):13029. https://doi.org/10.1038/s41598-018-31384-8

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lisboa Cde O, Masterson D, da Motta AF, Motta AT (2015) Reliability and reproducibility of three-dimensional cephalometric landmarks using CBCT: a systematic review. J Appl Oral Sci 23(2):112–119. https://doi.org/10.1590/1678-775720140336

    Article  PubMed  Google Scholar 

  21. Hilgenfeld T, Prager M, Heil A, Schwindling FS, Nittka M, Grodzki D, Rammelsberg P, Bendszus M, Heiland S (2017) PETRA, MSVAT-SPACE and SEMAC sequences for metal artefact reduction in dental MR imaging. Eur Radiol 27(12):5104–5112. https://doi.org/10.1007/s00330-017-4901-1

    Article  PubMed  Google Scholar 

  22. Titiz I, Laubinger M, Keller T, Hertrich K, Hirschfelder U (2012) Repeatability and reproducibility of landmarks—a three-dimensional computed tomography study. Eur J Orthod 34(3):276–286. https://doi.org/10.1093/ejo/cjq190

    Article  PubMed  Google Scholar 

  23. Hassan B, Nijkamp P, Verheij H, Tairie J, Vink C, van der Stelt P, van Beek H (2013) Precision of identifying cephalometric landmarks with cone beam computed tomography in vivo. Eur J Orthod 35(1):38–44. https://doi.org/10.1093/ejo/cjr050

    Article  PubMed  Google Scholar 

  24. Schlicher W, Nielsen I, Huang JC, Maki K, Hatcher DC, Miller AJ (2012) Consistency and precision of landmark identification in three-dimensional cone beam computed tomography scans. Eur J Orthod 34(3):263–275. https://doi.org/10.1093/ejo/cjq144

    Article  PubMed  Google Scholar 

  25. Naji P, Alsufyani NA, Lagravere MO (2014) Reliability of anatomic structures as landmarks in three-dimensional cephalometric analysis using CBCT. Angle Orthod 84(5):762–772. https://doi.org/10.2319/090413-652.1

    Article  PubMed  Google Scholar 

  26. Pittayapat P, Jacobs R, Bornstein MM, Odri GA, Kwon MS, Lambrichts I, Willems G, Politis C, Olszewski R (2016) A new mandible-specific landmark reference system for three-dimensional cephalometry using cone-beam computed tomography. Eur J Orthod 38(6):563–568. https://doi.org/10.1093/ejo/cjv088

    Article  PubMed  Google Scholar 

  27. Olszewski R, Reychler H, Cosnard G, Denis JM, Vynckier S, Zech F (2008) Accuracy of three-dimensional (3D) craniofacial cephalometric landmarks on a low-dose 3D computed tomograph. Dentomaxillofac Radiol 37(5):261–267. https://doi.org/10.1259/dmfr/33343444

    Article  PubMed  Google Scholar 

  28. Olszewski R, Tanesy O, Cosnard G, Zech F, Reychler H (2010) Reproducibility of osseous landmarks used for computed tomography based three-dimensional cephalometric analyses. J Craniomaxillofac Surg 38(3):214–221. https://doi.org/10.1016/j.jcms.2009.05.005

    Article  PubMed  Google Scholar 

  29. Olszewski R, Frison L, Wisniewski M, Denis JM, Vynckier S, Cosnard G, Zech F, Reychler H (2013) Reproducibility of three-dimensional cephalometric landmarks in cone-beam and low-dose computed tomography. Clin Oral Investig 17(1):285–292. https://doi.org/10.1007/s00784-012-0688-2

    Article  PubMed  Google Scholar 

  30. Lagravere MO, Gordon JM, Guedes IH, Flores-Mir C, Carey JP, Heo G, Major PW (2009) Reliability of traditional cephalometric landmarks as seen in three-dimensional analysis in maxillary expansion treatments. Angle Orthod 79(6):1047–1056. https://doi.org/10.2319/010509-10R.1

    Article  PubMed  Google Scholar 

  31. Lagravere MO, Low C, Flores-Mir C, Chung R, Carey JP, Heo G, Major PW (2010) Intraexaminer and interexaminer reliabilities of landmark identification on digitized lateral cephalograms and formatted 3-dimensional cone-beam computerized tomography images. Am J Orthod Dentofac Orthop 137(5):598–604. https://doi.org/10.1016/j.ajodo.2008.07.018

    Article  Google Scholar 

  32. Katkar RA, Kummet C, Dawson D, Moreno Uribe L, Allareddy V, Finkelstein M, Ruprecht A (2013) Comparison of observer reliability of three-dimensional cephalometric landmark identification on subject images from Galileos and i-CAT cone beam CT. Dentomaxillofac Radiol 42(9):20130059. https://doi.org/10.1259/dmfr.20130059

    Article  PubMed  PubMed Central  Google Scholar 

  33. Neiva MB, Soares AC, Lisboa Cde O, Vilella Ode V, Motta AT (2015) Evaluation of cephalometric landmark identification on CBCT multiplanar and 3D reconstructions. Angle Orthod 85(1):11–17. https://doi.org/10.2319/120413-891.1

    Article  PubMed  Google Scholar 

  34. Muramatsu A, Nawa H, Kimura M, Yoshida K, Maeda M, Katsumata A, Ariji E, Goto S (2008) Reproducibility of maxillofacial anatomic landmarks on 3-dimensional computed tomographic images determined with the 95% confidence ellipse method. Angle Orthod 78(3):396–402. https://doi.org/10.2319/040207-166.1

    Article  PubMed  Google Scholar 

  35. Fuyamada M, Nawa H, Shibata M, Yoshida K, Kise Y, Katsumata A, Ariji E, Goto S (2011) Reproducibility of landmark identification in the jaw and teeth on 3-dimensional cone-beam computed tomography images. Angle Orthod 81(5):843–849. https://doi.org/10.2319/010711-5.1

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fuyamada M, Shibata M, Nawa H, Yoshida K, Kise Y, Katsumata A, Ariji E, Goto S (2014) Reproducibility of maxillofacial landmark identification on three-dimensional cone-beam computed tomography images of patients with mandibular prognathism: comparative study of a tentative method and traditional cephalometric analysis. Angle Orthod 84(6):966–973. https://doi.org/10.2319/111313-836.1

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ludlow JB, Gubler M, Cevidanes L, Mol A (2009) Precision of cephalometric landmark identification: cone-beam computed tomography vs conventional cephalometric views. Am J Orthod Dentofac Orthop 136(3):312 e311–312 e310; discussion 312–313. https://doi.org/10.1016/j.ajodo.2008.12.018

    Article  Google Scholar 

  38. de Oliveira AE, Cevidanes LH, Phillips C, Motta A, Burke B, Tyndall D (2009) Observer reliability of three-dimensional cephalometric landmark identification on cone-beam computerized tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107(2):256–265. https://doi.org/10.1016/j.tripleo.2008.05.039

    Article  PubMed  Google Scholar 

  39. Theodorakou C, Walker A, Horner K, Pauwels R, Bogaerts R, Jacobs R, Consortium SP (2012) Estimation of paediatric organ and effective doses from dental cone beam CT using anthropomorphic phantoms. Br J Radiol 85(1010):153–160. https://doi.org/10.1259/bjr/19389412

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sedlacik J, Kutzner D, Khokale A, Schulze D, Fiehler J, Celik T, Gareis D, Smeets R, Friedrich RE, Heiland M, Assaf AT (2016) Optimized 14 + 1 receive coil array and position system for 3D high-resolution MRI of dental and maxillomandibular structures. Dentomaxillofac Radiol 45(1):20150177. https://doi.org/10.1259/dmfr.20150177

    Article  PubMed  Google Scholar 

  41. Li GN, M.; Paul, D.; Lauer, L.. (2011) MSVAT-SPACE for fast metal implants imaging. Proc Intl Soc Mag Reson Med 19:3171

  42. Eggers G, Rieker M, Kress B, Fiebach J, Dickhaus H, Hassfeld S (2005) Artefacts in magnetic resonance imaging caused by dental material. MAGMA 18(2):103–111. https://doi.org/10.1007/s10334-005-0101-0

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Dietmar Hopp Foundation for their friendly support of this research project. Many thanks to Mathias Nittka, PhD, from Siemens Healthcare for his cooperation and assistance in the setup of the MSVAT-SPACE sequence. A.J. receives funding from a postdoctoral fellowship of the Medical Faculty of the University of Heidelberg.

Funding

This study was supported by the Dietmar Hopp Foundation (grant no. 23011228; grant holders—A.J., S.H., C.J.L., and S.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Hilgenfeld.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All methods were performed in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This study was approved by the local research ethics committee of the University of Heidelberg (approval no. S-294/2014).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juerchott, A., Freudlsperger, C., Zingler, S. et al. In vivo reliability of 3D cephalometric landmark determination on magnetic resonance imaging: a feasibility study. Clin Oral Invest 24, 1339–1349 (2020). https://doi.org/10.1007/s00784-019-03015-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-019-03015-7

Keywords

Navigation