Accuracy of orthodontic mini-implants placed at the anterior palate by tooth-borne or gingiva-borne guide support: a cadaveric study

Abstract

Objective

The aim of this cadaveric study was to measure the transfer accuracy of orthodontic mini-implant placement at the anterior palate depending on tooth-borne or gingiva-borne guide support.

Materials and methods

Forty orthodontic mini-implants were placed paramedian in the anterior palate of 20 cadaver heads using tooth-borne (TBG) or gingiva-borne guides (GBG). Placement was planned after superimposition of lateral cephalograms and corresponding plaster models. After mini-implant placement, digital impressions were taken with scanbodies. For the measurement of both linear and angle deviations, virtual planning models and postoperative oral scans were compared using automatic surface registration based on an iterative closest point algorithm.

Results

Statistical differences between TBG and GBG were detected for lateral deviations 0.88 mm (SD 0.46) versus 1.65 mm (SD 1.03) (p = .004) and sagittal angular deviations 3.67° (SD 2.25) versus 6.46° (SD 5.5) (p = .043). No differences were found for vertical deviations 2.34 mm (SD 0.74) versus 2.14 mm (SD 0.73) (p = .40) and transverse angular deviations 3.60° (SD 2.89) versus 4.06° (SD 3.04) (p = .62).

Conclusions

The use of surgical guides based on silicone provides sufficient control of orthodontic mini-implant placement and is comparable to CAD/CAM templates. However, when compared with guided dental implantology, the planned mini-implant position is more inaccurate. However, accuracy can be significantly increased by guide extension involving the teeth. Clinical investigations have to prove if the accuracy is sufficient for receiving an orthodontic appliance.

Clinical relevance

The use of lateral cephalograms and plaster models for silicone guide construction leads to lower radiation exposure and provides sufficient accuracy for palatal orthodontic mini-implant placement.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Baumgaertel S (2014) Temporary skeletal anchorage devices: the case for miniscrews. Am J Orthod Dentofac Orthop 145:558–564. https://doi.org/10.1016/j.ajodo.2014.03.009

    Article  Google Scholar 

  2. 2.

    Bae MJ, Kim JY, Park JT, Cha JY, Kim HJ, Yu HS, Hwang CJ (2013) Accuracy of miniscrew surgical guides assessed from cone-beam computed tomography and digital models. Am J Orthod Dentofac Orthop 143:893–901. https://doi.org/10.1016/j.ajodo.2013.02.018

    Article  Google Scholar 

  3. 3.

    Leung MT, Lee TC, Rabie AB, Wong RW (2008) Use of miniscrews and miniplates in orthodontics. J Oral Maxillofac Surg 66:1461–1466. https://doi.org/10.1016/j.joms.2007.12.029

    Article  PubMed  Google Scholar 

  4. 4.

    Prabhu J, Cousley RR (2006) Current products and practice: bone anchorage devices in orthodontics. J Orthod 33:288–307. https://doi.org/10.1179/146531205225021807

    Article  PubMed  Google Scholar 

  5. 5.

    Lee JS, Kim DH, Park YC, Kyung SH, Kim TK (2004) The efficient use of midpalatal miniscrew implants. Angle Orthod 74:711–714. https://doi.org/10.1043/0003-3219(2004)074<0711:TEUOMM>2.0.CO;2

    Article  PubMed  Google Scholar 

  6. 6.

    Nienkemper M, Wilmes B, Pauls A, Drescher D (2012) Multipurpose use of orthodontic mini-implants to achieve different treatment goals. J Orofac Orthop 73:467–476. https://doi.org/10.1007/s00056-012-0107-y

    Article  PubMed  Google Scholar 

  7. 7.

    Wehrbein H, Glatzmaier J, Mundwiller U, Diedrich P (1996) The Orthosystem--a new implant system for orthodontic anchorage in the palate. J Orofac Orthop 57:142–153

    Article  Google Scholar 

  8. 8.

    Gracco A, Lombardo L, Cozzani M, Siciliani G (2006) Quantitative evaluation with CBCT of palatal bone thickness in growing patients. Prog Orthod 7:164–174

    PubMed  Google Scholar 

  9. 9.

    Bernhart T, Vollgruber A, Gahleitner A, Dortbudak O, Haas R (2000) Alternative to the median region of the palate for placement of an orthodontic implant. Clin Oral Implants Res 11:595–601

    Article  Google Scholar 

  10. 10.

    Kang S, Lee SJ, Ahn SJ, Heo MS, Kim TW (2007) Bone thickness of the palate for orthodontic mini-implant anchorage in adults. Am J Orthod Dentofac Orthop 131:S74–S81. https://doi.org/10.1016/j.ajodo.2005.09.029

    Article  Google Scholar 

  11. 11.

    King KS, Lam EW, Faulkner MG, Heo G, Major PW (2007) Vertical bone volume in the paramedian palate of adolescents: a computed tomography study. Am J Orthod Dentofac Orthop 132:783–788. https://doi.org/10.1016/j.ajodo.2005.11.042

    Article  Google Scholar 

  12. 12.

    Ludwig B, Glasl B, Bowman SJ, Wilmes B, Kinzinger GS, Lisson JA (2011) Anatomical guidelines for miniscrew insertion: palatal sites. J Clin Orthod 45:433–441 quiz 467

    PubMed  Google Scholar 

  13. 13.

    Hourfar J, Kanavakis G, Bister D, Schatzle M, Awad L, Nienkemper M, Goldbecher C, Ludwig B (2015) Three dimensional anatomical exploration of the anterior hard palate at the level of the third ruga for the placement of mini-implants--a cone-beam CT study. Eur J Orthod 37:589–595. https://doi.org/10.1093/ejo/cju093

    Article  PubMed  Google Scholar 

  14. 14.

    Poon YC, Chang HP, Tseng YC, Chou ST, Cheng JH, Liu PH, Pan CY (2015) Palatal bone thickness and associated factors in adult miniscrew placements: a cone-beam computed tomography study. Kaohsiung J Med Sci 31:265–270. https://doi.org/10.1016/j.kjms.2015.02.002

    Article  PubMed  Google Scholar 

  15. 15.

    Kim HJ, Yun HS, Park HD, Kim DH, Park YC (2006) Soft-tissue and cortical-bone thickness at orthodontic implant sites. Am J Orthod Dentofac Orthop 130:177–182. https://doi.org/10.1016/j.ajodo.2004.12.024

    Article  Google Scholar 

  16. 16.

    Baumgaertel S (2009) Quantitative investigation of palatal bone depth and cortical bone thickness for mini-implant placement in adults. Am J Orthod Dentofac Orthop 136:104–108. https://doi.org/10.1016/j.ajodo.2008.11.020

    Article  Google Scholar 

  17. 17.

    Nienkemper M, Pauls A, Ludwig B, Drescher D (2015) Stability of paramedian inserted palatal mini-implants at the initial healing period: a controlled clinical study. Clin Oral Implants Res 26:870–875. https://doi.org/10.1111/clr.12321

    Article  PubMed  Google Scholar 

  18. 18.

    Kuhl S, Zurcher S, Mahid T, Muller-Gerbl M, Filippi A, Cattin P (2013) Accuracy of full guided vs. half-guided implant surgery. Clin Oral Implants Res 24:763–769. https://doi.org/10.1111/j.1600-0501.2012.02484.x

    Article  PubMed  Google Scholar 

  19. 19.

    Maino BG, Paoletto E, Lombardo L 3rd, Siciliani G (2016) A three-dimensional digital insertion guide for palatal miniscrew placement. J Clin Orthod 50:12–22

    PubMed  Google Scholar 

  20. 20.

    Liu H, Liu DX, Wang G, Wang CL, Zhao Z (2010) Accuracy of surgical positioning of orthodontic miniscrews with a computer-aided design and manufacturing template. Am J Orthod Dentofac Orthop 137:728 e1–728 e10; discussion 728-9. https://doi.org/10.1016/j.ajodo.2009.12.025

    Article  Google Scholar 

  21. 21.

    Novellino MM, Sesma N, Lagana DC, Ferrari G (2013) Linear and angular deviations of implants placed in experimental casts with stereolithographic drill guides fixed by o’ring ortho implant devices. Braz Dent J 24:391–396. https://doi.org/10.1590/0103-6440201302012

    Article  PubMed  Google Scholar 

  22. 22.

    Cassetta M, Altieri F, Di Giorgio R, Barbato E (2018) Palatal orthodontic miniscrew insertion using a CAD-CAM surgical guide: description of a technique. Int J Oral Maxillofac Surg 47:1195–1198. https://doi.org/10.1016/j.ijom.2018.03.018

    Article  PubMed  Google Scholar 

  23. 23.

    Jung BA, Wehrbein H, Heuser L, Kunkel M (2011) Vertical palatal bone dimensions on lateral cephalometry and cone-beam computed tomography: implications for palatal implant placement. Clin Oral Implants Res 22:664–668. https://doi.org/10.1111/j.1600-0501.2010.02021.x

    Article  PubMed  Google Scholar 

  24. 24.

    Wassell RW, Barker D, Walls AW (2002) Crowns and other extra-coronal restorations: impression materials and technique. Br Dent J 192(679–84):687–690

    Google Scholar 

  25. 25.

    Kanomi R (1997) Mini-implant for orthodontic anchorage. J Clin Orthod 31:763–767

    PubMed  Google Scholar 

  26. 26.

    Nienkemper M, Pauls A, Ludwig B, Wilmes B, Drescher D (2012) Multifunctional use of palatal mini-implants. J Clin Orthod 46:679–686 quiz 703-4

    PubMed  Google Scholar 

  27. 27.

    Mohammed H, Wafaie K, Rizk MZ, Almuzian M, Sosly R, Bearn DR (2018) Role of anatomical sites and correlated risk factors on the survival of orthodontic miniscrew implants: a systematic review and meta-analysis. Prog Orthod 19:36. https://doi.org/10.1186/s40510-018-0225-1

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Tosun T, Keles A, Erverdi N (2002) Method for the placement of palatal implants. Int J Oral Maxillofac Implants 17:95–100

    PubMed  Google Scholar 

  29. 29.

    Stoetzer M, Wagner ME, Wenzel D, Lindhorst D, Gellrich NC, von See C (2014) Nonradiological method for 3-dimensional implant position assessment using an intraoral scan: new method for postoperative implant control. Implant Dent 23:612–616. https://doi.org/10.1097/ID.0000000000000118

    Article  PubMed  Google Scholar 

  30. 30.

    von See C, Wagner ME, Schumann P, Lindhorst D, Gellrich NC, Stoetzer M (2014) Non-radiological method for three-dimensional implant position evaluation using an intraoral scan method. Clin Oral Implants Res 25:1091–1093. https://doi.org/10.1111/clr.12214

    Article  Google Scholar 

  31. 31.

    Scherer U, Stoetzer M, Ruecker M, Gellrich NC, von See C (2015) Template-guided vs. non-guided drilling in site preparation of dental implants. Clin Oral Investig 19:1339–1346. https://doi.org/10.1007/s00784-014-1346-7

    Article  PubMed  Google Scholar 

  32. 32.

    Schneider D, Marquardt P, Zwahlen M, Jung RE (2009) A systematic review on the accuracy and the clinical outcome of computer-guided template-based implant dentistry. Clin Oral Implants Res 20(Suppl 4):73–86. https://doi.org/10.1111/j.1600-0501.2009.01788.x

    Article  PubMed  Google Scholar 

  33. 33.

    Suzuki EY, Suzuki B (2008) Accuracy of miniscrew implant placement with a 3-dimensional surgical guide. J Oral Maxillofac Surg 66:1245–1252. https://doi.org/10.1016/j.joms.2007.08.047

    Article  PubMed  Google Scholar 

  34. 34.

    Miyazawa K, Kawaguchi M, Tabuchi M, Goto S (2010) Accurate pre-surgical determination for self-drilling miniscrew implant placement using surgical guides and cone-beam computed tomography. Eur J Orthod 32:735–740. https://doi.org/10.1093/ejo/cjq012

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stephan Christian Möhlhenrich.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with living human participants or animals. Institutional approval was given.

Informed consent

Not required.

Sources of support

The orthodontic mini-implants were provided free of charge by OrthoLox, Promedia Medizintechnik A Ahnfeldt GmbH, Siegen, Germany.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Möhlhenrich, S.C., Brandt, M., Kniha, K. et al. Accuracy of orthodontic mini-implants placed at the anterior palate by tooth-borne or gingiva-borne guide support: a cadaveric study. Clin Oral Invest 23, 4425–4431 (2019). https://doi.org/10.1007/s00784-019-02885-1

Download citation

Keywords

  • Orthodontics
  • Mini-implant
  • Orthodontic implants
  • Transfer accuracy
  • Surgical guides
  • Surgical templates
  • Temporary anchorage device (TAD)