Skip to main content

Advertisement

Log in

Trueness of four different milling procedures used in dental CAD/CAM systems

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Milling is a crucial step in producing restorations using computer-aided design and computer-aided manufacturing (CAD/CAM) systems. In this study the trueness of currently available milling devices was evaluated.

Materials and methods

Thirty clinical cases (ten inlays, ten crowns, ten onlays) were milled from ceramic blocks using four different milling approaches: five axis with IMES CORiTEC 450i, four axis with CEREC MCXL, four axis with CEREC MCXL-EF and five axis with inLab MCX5. The milled restorations were scanned and the occlusal and inner surfaces compared to the originally calculated 3D surface using difference analysis software. The (90–10 %) / 2 percentile of the distances were calculated and analysed using one-way ANOVA with the post hoc Scheffé test (α = 0.05). Chipping of marginal areas were visually examined and analysed using one-way ANOVA with a post hoc Tamhane test (α = 0.05).

Results

At inner surfaces, the milling trueness of IMES (33.9 ± 16.3 μm), X5 (32.3 ± 9.7 μm) and MCXL-EF (34.4 ± 7.5 μm) was significantly better (p < 0.001) than that of MCXL (62.1 ± 17.1 μm). At occlusal surfaces, MCXL-EF (25.7 ± 9.3 μm) showed significant higher accuracy (p < 0.001) than MCXL (48.7 ± 23.3 μm) and X5 (40.9 ± 20.4 μm). IMES produced the most chipping (p < 0.001).

Conclusions

Five-axis milling devices yield high trueness. MCXL-EF is competitive and may allow chairside fabrication with good milling results.

Clinical relevance

Accurate milling is required for well-fitting restorations and thereby requires fewer manual finishing steps, yields smaller marginal gaps, resistance to secondary caries and longevity of restorations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anadioti E, Aquilino SA, Gratton DG, et al. (2014) 3D and 2D marginal fit of pressed and CAD/CAM lithium disilicate crowns made from digital and conventional impressions. J Prosthodont 23:610–617. doi:10.1111/jopr.12180

    Article  PubMed  Google Scholar 

  2. Tapie L, Lebon N, Mawussi B, Fron Chabouis H, Duret F, Attal JP (2015) Understanding dental CAD/CAM for restorations—the digital workflow from a mechanical engineering viewpoint. Int J Comput Dent 18:21–44

    PubMed  Google Scholar 

  3. Tinschert J, Natt G, Hassenpflug S, Spiekermann H (2004) Status of current CAD/CAM technology in dental medicine. Int J Comput Dent 7:25–45

    PubMed  Google Scholar 

  4. Ender A, Mehl A (2015) In-vitro evaluation of the accuracy of conventional and digital methods of obtaining full-arch dental impressions. Quintessence Int 46:9–17. doi:10.3290/j.qi.a32244

    PubMed  Google Scholar 

  5. Luthardt RG, Loos R, Quaas S (2005) Accuracy of intraoral data acquisition in comparison to the conventional impression. Int J Comput Dent 8:283–294

    PubMed  Google Scholar 

  6. Mehl A, Ender A, Mormann W, Attin T (2009) Accuracy testing of a new intraoral 3D camera. Int J Comput Dent 12:11–28

    PubMed  Google Scholar 

  7. Ziegler M (2009) Digital impression taking with reproducibly high precision. Int J Comput Dent 12:159–163

    PubMed  Google Scholar 

  8. Mehl A (2012) A new concept for the integration of dynamic occlusion in the digital construction process. Int J Comput Dent 15:109–123

    PubMed  Google Scholar 

  9. Contrepois M, Soenen A, Bartala M, Laviole O (2013) Marginal adaptation of ceramic crowns: a systematic review. J Prosthet Dent 110:447–454.e10. doi:10.1016/j.prosdent.2013.08.003

    Article  PubMed  Google Scholar 

  10. Hmaidouch R, Neumann P, Mueller WD (2011) Influence of preparation form, luting space setting and cement type on the marginal and internal fit of CAD/CAM crown copings. Int J Comput Dent 14:219–226

    PubMed  Google Scholar 

  11. Nakamura T, Dei N, Kojima T, Wakabayashi K (2003) Marginal and internal fit of Cerec 3 CAD/CAM all-ceramic crowns. Int J Prosthodont 16:244–248

    PubMed  Google Scholar 

  12. Lee KB, Park CW, Kim KH, Kwon TY (2008) Marginal and internal fit of all-ceramic crowns fabricated with two different CAD/CAM systems. Dent Mater J 27:422–426

    Article  PubMed  Google Scholar 

  13. Kosyfaki P, del Pilar Pinilla Martin M, Strub JR (2010) Relationship between crowns and the periodontium: a literature update. Quintessence Int 41:109–126

  14. Yuksel E, Zaimoglu A (2011) Influence of marginal fit and cement types on microleakage of all-ceramic crown systems. Braz Oral Res 25:261–266

    PubMed  Google Scholar 

  15. Baig MR, Tan KB, Nicholls JI (2010) Evaluation of the marginal fit of a zirconia ceramic computer-aided machined (CAM) crown system. J Prosthet Dent 104:216–227. doi:10.1016/S0022-3913(10)60128-X

    Article  PubMed  Google Scholar 

  16. Sax C, Hämmerle CH, Sailer I (2011) 10-year clinical outcomes of fixed dental prostheses with zirconia frameworks. Int J Comput Dent 14:183–202

    PubMed  Google Scholar 

  17. Bosch G, Ender A, Mehl A (2014) A 3-dimensional accuracy analysis of chairside CAD/CAM milling processes. J Prosthet Dent 112:1425–1431. doi:10.1016/j.prosdent.2014.05.012

    Article  PubMed  Google Scholar 

  18. Kohorst P, Butzheinen LO, Dittmer MP, Heuer W, Borchers L, Stiesch M (2010) Influence of preliminary damage on the load-bearing capacity of zirconia fixed dental prostheses. J Prosthodont 19:606–613. doi:10.1111/j.1532-849X.2010.00640.x

    Article  PubMed  Google Scholar 

  19. Hamza TA, Ezzat HA, El-Hossary MM, Katamish HA, Shokry TE, Rosenstiel SF (2013) Accuracy of ceramic restorations made with two CAD/CAM systems. J Prosthet Dent 109:83–87. doi:10.1016/S0022-3913(13)60020-7

    Article  PubMed  Google Scholar 

  20. Kuhn K, Ostertag S, Ostertag M, Walter MH, Luthardt RG, Rudolph H (2015) Comparison of an analog and digital quantitative and qualitative analysis for the fit of dental copings. Comput Biol Med 57:32–41. doi:10.1016/j.compbiomed.2014.11.017

    Article  PubMed  Google Scholar 

  21. Luthardt RG, Bornemann G, Lemelson S, Walter MH, Huls A (2004) An innovative method for evaluation of the 3-D internal fit of CAD/CAM crowns fabricated after direct optical versus indirect laser scan digitizing. Int J Prosthodont 17:680–685

    PubMed  Google Scholar 

  22. Moldovan O, Luthardt RG, Corcodel N, Rudolph H (2011) Three-dimensional fit of CAD/CAM-made zirconia copings. Dent Mater 27:1273–1278. doi:10.1016/j.dental.2011.09.006

    Article  PubMed  Google Scholar 

  23. Mously HA, Finkelman M, Zandparsa R, Hirayama H (2014) Marginal and internal adaptation of ceramic crown restorations fabricated with CAD/CAM technology and the heat-press technique. J Prosthet Dent 112:249–256. doi:10.1016/j.prosdent.2014.03.017

    Article  PubMed  Google Scholar 

  24. Schaefer O, Kuepper H, Thompson GA, Cachovan G, Hefti AF, Guentsch A (2013) Effect of CNC-milling on the marginal and internal fit of dental ceramics: a pilot study. Dent Mater 29:851–858. doi:10.1016/j.dental.2013.04.018

    Article  PubMed  Google Scholar 

  25. Morris HF (1992) Department of Veterans Affairs Cooperative Studies Project No. 242. Quantitative and qualitative evaluation of the marginal fit of cast ceramic, porcelain-shoulder, and cast metal full crown margins. Participants of CSP no. 147/242. J Prosthet Dent 67:198–204

    Article  PubMed  Google Scholar 

  26. Nawafleh NA, Mack F, Evans J, Mackay J, Hatamleh MM (2013) Accuracy and reliability of methods to measure marginal adaptation of crowns and FDPs: a literature review. J Prosthodont 22:419–428. doi:10.1111/jopr.12006

    Article  PubMed  Google Scholar 

  27. Anadioti E, Aquilino SA, Gratton DG, et al. (2015) Internal fit of pressed and computer-aided design/computer-aided manufacturing ceramic crowns made from digital and conventional impressions. J Prosthet Dent 113:304–309. doi:10.1016/j.prosdent.2014.09.015

    Article  PubMed  Google Scholar 

  28. Brawek PK, Wolfart S, Endres L, Kirsten A, Reich S (2013) The clinical accuracy of single crowns exclusively fabricated by digital workflow—the comparison of two systems. Clin Oral Investig 17:2119–2125. doi:10.1007/s00784-013-0923-5

    Article  PubMed  Google Scholar 

  29. Gassino G, Barone Monfrin S, Scanu M, Spina G, Preti G (2004) Marginal adaptation of fixed prosthodontics: a new in vitro 360-degree external examination procedure. Int J Prosthodont 17:218–223

    PubMed  Google Scholar 

  30. Kohorst P, Brinkmann H, Li J, Borchers L, Stiesch M (2009) Marginal accuracy of four-unit zirconia fixed dental prostheses fabricated using different computer-aided design/computer-aided manufacturing systems. Eur J Oral Sci 117:319–325. doi:10.1111/j.1600-0722.2009.00622.x

    Article  PubMed  Google Scholar 

  31. Pelekanos S, Koumanou M, Koutayas SO, Zinelis S, Eliades G (2009) Micro-CT evaluation of the marginal fit of different In-Ceram alumina copings. Eur J Esthet Dent 4:278–292

    PubMed  Google Scholar 

  32. Holst S, Karl M, Wichmann M, Matta RE (2011) A new triple-scan protocol for 3D fit assessment of dental restorations. Quintessence Int 42:651–657

    PubMed  Google Scholar 

  33. Schaefer O, Decker M, Wittstock F, Kuepper H, Guentsch A (2014) Impact of digital impression techniques on the adaption of ceramic partial crowns in vitro. J Dent 42:677–683. doi:10.1016/j.jdent.2014.01.016

    Article  PubMed  Google Scholar 

  34. Schaefer O, Kuepper H, Sigusch BW, Thompson GA, Hefti AF, Guentsch A (2013) Three-dimensional fit of lithium disilicate partial crowns in vitro. J Dent 41:271–277. doi:10.1016/j.jdent.2012.11.014

    Article  PubMed  Google Scholar 

  35. Schaefer O, Watts DC, Sigusch BW, Kuepper H, Guentsch A (2012) Marginal and internal fit of pressed lithium disilicate partial crowns in vitro: a three-dimensional analysis of accuracy and reproducibility. Dent Mater 28:320–326. doi:10.1016/j.dental.2011.12.008

    Article  PubMed  Google Scholar 

  36. Zaruba M, Ender A, Mehl A (2014) New applications for three-dimensional follow-up and quality control using optical impression systems and OraCheck. Int J Comput Dent 17:53–64

    PubMed  Google Scholar 

  37. Kim KB, Kim JH, Kim WC, Kim JH (2014) Three-dimensional evaluation of gaps associated with fixed dental prostheses fabricated with new technologies. J Prosthet Dent 112:1432–1436. doi:10.1016/j.prosdent.2014.07.002

    Article  PubMed  Google Scholar 

  38. Tapie L, Lebon N, Mawussi B, Fron-Chabouis H, Duret F, Attal JP (2015) Understanding dental CAD/CAM for restorations—accuracy from a mechanical engineering viewpoint. Int J Comput Dent 18:343–367

    PubMed  Google Scholar 

  39. Lebon N, Tapie L, Duret F, Attal JP (2016) Understanding dental CAD/CAM for restorations—dental milling machines from a mechanical engineering viewpoint. Part A: chairside milling machines. Int J Comput Dent 19:45–62

    PubMed  Google Scholar 

  40. Ahlers MO, Morig G, Blunck U, Hajto J, Probster L, Frankenberger R (2009) Guidelines for the preparation of CAD/CAM ceramic inlays and partial crowns. Int J Comput Dent 12:309–325

    PubMed  Google Scholar 

  41. Ender A, Zimmermann M, Attin T, Mehl A (2015) In vivo precision of conventional and digital methods for obtaining quadrant dental impressions. Clin Oral Investig. doi:10.1007/s00784-015-1641-y

    PubMed  Google Scholar 

  42. Rudolph H, Luthardt RG, Walter MH (2007) Computer-aided analysis of the influence of digitizing and surfacing on the accuracy in dental CAD/CAM technology. Comput Biol Med 37:579–587. doi:10.1016/j.compbiomed.2006.05.006

    Article  PubMed  Google Scholar 

  43. Quinn GD, Giuseppetti AA, Hoffman KH (2014) Chipping fracture resistance of dental CAD/CAM restorative materials: part I—procedures and results. Dent Mater 30:e99–e111. doi:10.1016/j.dental.2014.02.010

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinna Kirsch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This study was not funded.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirsch, C., Ender, A., Attin, T. et al. Trueness of four different milling procedures used in dental CAD/CAM systems. Clin Oral Invest 21, 551–558 (2017). https://doi.org/10.1007/s00784-016-1916-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-016-1916-y

Keywords

Navigation