Skip to main content

Antibacterial properties of copper iodide-doped glass ionomer-based materials and effect of copper iodide nanoparticles on collagen degradation

Abstract

Objectives

This study investigated the antibacterial properties and micro-hardness of polyacrylic acid (PAA)-coated copper iodide (CuI) nanoparticles incorporated into glass ionomer-based materials, and the effect of PAA-CuI on collagen degradation.

Materials and methods

PAA-CuI nanoparticles were incorporated into glass ionomer (GI), Ionofil Molar AC, and resin-modified glass ionomer (RMGI), Vitrebond, at 0.263 wt%. The antibacterial properties against Streptococcus mutans (n = 6/group) and surface micro-hardness (n = 5/group) were evaluated. Twenty dentin beams were completely demineralized in 10 wt% phosphoric acid and equally divided in two groups (n = 10/group) for incubation in simulated body fluid (SBF) or SBF containing 1 mg/ml PAA-CuI. The amount of dry mass loss and hydroxyproline (HYP) released were quantified. Kruskal-Wallis, Student’s t test, two-way ANOVA, and Mann-Whitney were used to analyze the antibacterial, micro-hardness, dry mass, and HYP release data, respectively (p < 0.05).

Results

Addition of PAA-CuI nanoparticles into the glass ionomer matrix yielded significant reduction (99.999 %) in the concentration of bacteria relative to the control groups. While micro-hardness values of PAA-CuI-doped GI were no different from its control, PAA-CuI-doped RMGI demonstrated significantly higher values than its control. A significant decrease in dry mass weight was shown only for the control beams (10.53 %, p = 0.04). Significantly less HYP was released from beams incubated in PAA-CuI relative to the control beams (p < 0.001).

Conclusions

PAA-CuI nanoparticles are an effective additive to glass ionomer-based materials as they greatly enhance their antibacterial properties and reduce collagen degradation without an adverse effect on their mechanical properties.

Clinical relevance

The use of copper-doped glass ionomer-based materials under composite restorations may contribute to an increased longevity of adhesive restorations, because of their enhanced antibacterial properties and reduced collagen degradation.

This is a preview of subscription content, access via your institution.

Fig 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Cheng L, Weir MD, Zhang K, Wu EJ, Xu SM, Zhou X, Xu HH (2012) Dental plaque microcosm biofilm behavior on calcium phosphate nanocomposite with quaternary ammonium. Dent Mater 28(8):853–862. doi:10.1016/j.dental.2012.04.024

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Melo MA, Cheng L, Weir MD, Hsia RC, Rodrigues LK, Xu HH (2013) Novel dental adhesive containing antibacterial agents and calcium phosphate nanoparticles. J Biomed Mater Res B 101(4):620–629. doi:10.1002/jbm.b.32864

    Article  Google Scholar 

  3. 3.

    Mohamed Hamouda I (2012) Current perspectives of nanoparticles in medical and dental biomaterials. J Biomed Res 26(3):143–151. doi:10.7555/JBR.26.20120027

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Pereira-Cenci T, Cenci MS, Fedorowicz Z, Marchesan MA (2009) Antibacterial agents in composite restorations for the prevention of dental caries. Cochrane Database Syst Rev 3:CD007819. doi:10.1002/14651858.CD007819.pub2

    Google Scholar 

  5. 5.

    Sarrett DC (2005) Clinical challenges and the relevance of materials testing for posterior composite restorations. Dent Mater 21(1):9–20. doi:10.1016/j.dental.2004.10.001

    PubMed  Article  Google Scholar 

  6. 6.

    Wiegand A, Buchalla W, Attin T (2007) Review on fluoride-releasing restorative materials–fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater 23(3):343–362. doi:10.1016/j.dental.2006.01.022

    PubMed  Article  Google Scholar 

  7. 7.

    Xie D, Weng Y, Guo X, Zhao J, Gregory RL, Zheng C (2011) Preparation and evaluation of a novel glass-ionomer cement with antibacterial functions. Dent Mater 27(5):487–496. doi:10.1016/j.dental.2011.02.006

    PubMed  Article  Google Scholar 

  8. 8.

    Fan C, Chu L, Rawls HR, Norling BK, Cardenas HL, Whang K (2011) Development of an antimicrobial resin—a pilot study. Dent Mater 27(4):322–328. doi:10.1016/j.dental.2010.11.008

    PubMed  Article  Google Scholar 

  9. 9.

    Imazato S (2003) Antibacterial properties of resin composites and dentin bonding systems. Dent Mater 19(6):449–457

    PubMed  Article  Google Scholar 

  10. 10.

    Murray PE, Windsor LJ, Smyth TW, Hafez AA, Cox CF (2002) Analysis of pulpal reactions to restorative procedures, materials, pulp capping, and future therapies. Crit Rev Oral Biol Med 13(6):509–520

    PubMed  Article  Google Scholar 

  11. 11.

    Jokstad A, Bayne S, Blunck U, Tyas M, Wilson N (2001) Quality of dental restorations. FDI Commission Project 2-95. Int Dent J 51(3):117–158

    PubMed  Article  Google Scholar 

  12. 12.

    Christensen GJ (2010) Should resin-based composite dominate restorative dentistry today? J Am Dent Assoc 141(12):1490–1493

    PubMed  Article  Google Scholar 

  13. 13.

    Mjor IA, Dahl JE, Moorhead JE (2000) Age of restorations at replacement in permanent teeth in general dental practice. Acta Odontol Scand 58(3):97–101

    PubMed  Article  Google Scholar 

  14. 14.

    Collins CJ, Bryant RW, Hodge KL (1998) A clinical evaluation of posterior composite resin restorations: 8-year findings. J Dent 26(4):311–317

    PubMed  Article  Google Scholar 

  15. 15.

    Bernardo M, Luis H, Martin MD, Leroux BG, Rue T, Leitao J, DeRouen TA (2007) Survival and reasons for failure of amalgam versus composite posterior restorations placed in a randomized clinical trial. J Am Dent Assoc 138(6):775–783

    PubMed  Article  Google Scholar 

  16. 16.

    Breschi L, Martin P, Mazzoni A, Nato F, Carrilho M, Tjäderhane L, Visintini E, Cadenaro M, Tay FR, Dorigo EDS, Pashley DH (2010) Use of a specific MMP-inhibitor (galardin) for preservation of hybrid layer. Dent Mater 26(6):571–578

    PubMed  Article  Google Scholar 

  17. 17.

    Carrilho MRO, Geraldeli S, Tay FR, de Goes MF, Carvalho RM, Tjäderhane L, Reis AF, Hebling J, Mazzoni A, Breschi L, Pashley DH (2007) In vivo preservation of the hybrid layer by chlorhexidine. J Dent Res 86(6):529–533. doi:10.1177/154405910708600608

    PubMed  Article  Google Scholar 

  18. 18.

    Hebling J, Pashley DH, Tjäderhane L, Tay FR (2005) Chlorhexidine arrests subclinical degradation of dentin hybrid layers in vivo. J Dent Res 84(8):741–746. doi:10.1177/154405910508400811

    PubMed  Article  Google Scholar 

  19. 19.

    Pashley DH, Tay FR, Yiu C, Hashimoto M, Breschi L, Carvalho RM, Ito S (2004) Collagen degradation by host-derived enzymes during aging. J Dent Res 83(3):216–221

    PubMed  Article  Google Scholar 

  20. 20.

    Scaffa PM, Vidal CM, Barros N, Gesteira TF, Carmona AK, Breschi L, Pashley DH, Tjaderhane L, Tersariol IL, Nascimento FD, Carrilho MR (2012) Chlorhexidine inhibits the activity of dental cysteine cathepsins. J Dent Res 91:420–425. doi:10.1177/0022034511435329

    PubMed  Article  Google Scholar 

  21. 21.

    Sabatini C, Patel SK (2013) Matrix metalloproteinase inhibitory properties of benzalkonium chloride stabilizes adhesive interfaces. Eur J Oral Sci 121(6):610–616

    PubMed  Article  Google Scholar 

  22. 22.

    Tezvergil-Mutluay A, Agee KA, Uchiyama T, Imazato S, Mutluay MM, Cadenaro M, Breschi L, Nishitani Y, Tay FR, Pashley DH (2011) The inhibitory effects of quaternary ammonium methacrylates on soluble and matrix-bound MMPs. J Dent Res 90(4):535–540. doi:10.1177/0022034510389472

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Carrilho MR, Tay FR, Donnelly AM, Agee KA, Tjaderhane L, Mazzoni A, Breschi L, Foulger S, Pashley DH (2009) Host-derived loss of dentin matrix stiffness associated with solubilization of collagen. J Biomed Mater Res B 90(1):373–380. doi:10.1002/jbm.b.31295

    Google Scholar 

  24. 24.

    Thneibat A, Fontana M, Cochran MA, Gonzalez-Cabezas C, Moore BK, Matis BA, Lund MR (2008) Anticariogenic and antibacterial properties of a copper varnish using an in vitro microbial caries model. Oper Dent 33(2):142–148. doi:10.2341/07-50

    PubMed  Article  Google Scholar 

  25. 25.

    Canapp SO Jr, Farese JP, Schultz GS, Gowda S, Ishak AM, Swaim SF, Vangilder J, Lee-Ambrose L, Martin FG (2003) The effect of topical tripeptide-copper complex on healing of ischemic open wounds. Vet Surg 32(6):515–523. doi:10.1053/jvet.2003.50070

    PubMed  Article  Google Scholar 

  26. 26.

    Guo H, Lee JD, Uzui H, Toyoda K, Geshi T, Yue H, Ueda T (2005) Effects of copper and zinc on the production of homocysteine-induced extracellular matrix metalloproteinase-2 in cultured rat vascular smooth muscle cells. Acta Cardiol 60(4):353–359

    PubMed  Article  Google Scholar 

  27. 27.

    Souza AP, Gerlach RF, Line SR (2001) Inhibition of human gelatinases by metals released from dental amalgam. Biomaterials 22(14):2025–2030

    PubMed  Article  Google Scholar 

  28. 28.

    Sabatini C, Mennito AS, Wolf BJ, Pashley DH, Renne WG (2015) Incorporation of bactericidal poly-acrylic acid modified copper iodide particles into adhesive resins. J Dent. doi:10.1016/j.jdent.2015.02.012

    PubMed  Google Scholar 

  29. 29.

    Nicholson JW (1998) Chemistry of glass-ionomer cements: a review. Biomaterials 19(6):485–494

    PubMed  Article  Google Scholar 

  30. 30.

    Mitra SB, Lee CY, Bui HT, Tantbirojn D, Rusin RP (2009) Long-term adhesion and mechanism of bonding of a paste-liquid resin-modified glass-ionomer. Dent Mater 25(4):459–466. doi:10.1016/j.dental.2008.09.008

    PubMed  Article  Google Scholar 

  31. 31.

    Barkhordar RA, Kempler D, Pelzner RR, Stark MM (1989) Technical note: antimicrobial action of glass-ionomer lining cement on S. sanguis and S. mutans. Dent Mater 5(4):281–282

    PubMed  Article  Google Scholar 

  32. 32.

    Hebling J (2006) Antibacterial activity of glass-ionomer cements. Pract Proced Aesthet Dent 18(9):543–545

    PubMed  Google Scholar 

  33. 33.

    Bhavana V, Chaitanya KP, Gandi P, Patil J, Dola B, Reddy RB (2015) Evaluation of antibacterial and antifungal activity of new calcium-based cement (Biodentine) compared to MTA and glass ionomer cement. J Conserv Dent: JCD 18(1):44–46. doi:10.4103/0972-0707.148892

    PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Mittal S, Soni H, Sharma DK, Mittal K, Pathania V, Sharma S (2015) Comparative evaluation of the antibacterial and physical properties of conventional glass ionomer cement containing chlorhexidine and antibiotics. J Int Soc Prev Community Dent 5(4):268–275. doi:10.4103/2231-0762.161754

    PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Itota T, Carrick TE, Yoshiyama M, McCabe JF (2004) Fluoride release and recharge in giomer, compomer and resin composite. Dent Mater 20(9):789–795. doi:10.1016/j.dental.2003.11.009

    PubMed  Article  Google Scholar 

  36. 36.

    Svanberg M, Mjor IA, Orstavik D (1990) Mutans streptococci in plaque from margins of amalgam, composite, and glass-ionomer restorations. J Dent Res 69(3):861–864

    PubMed  Article  Google Scholar 

  37. 37.

    Forsten L (1998) Fluoride release and uptake by glass-ionomers and related materials and its clinical effect. Biomaterials 19(6):503–508

    PubMed  Article  Google Scholar 

  38. 38.

    Gjorgievska E, Nicholson JW, Grcev AT (2012) Ion migration from fluoride-releasing dental restorative materials into dental hard tissues. J Mater Sci Mater Med. doi:10.1007/s10856-012-4653-z

    PubMed  Google Scholar 

  39. 39.

    Evans A, Leishman SJ, Walsh LJ, Seow WK (2015) Interference of antimicrobial activity of combinations of oral antiseptics against Streptococcus mutans, Streptococcus sanguinis, and Lactobacillus acidophilus. Pediatr Dent 37(4):332–338

    PubMed  Google Scholar 

  40. 40.

    Baig M, Farag A, Sajid J, Potluri R, Irwin RB, Khalid HM (2014) Shellfish allergy and relation to iodinated contrast media: United Kingdom survey. World J Cardiol 6(3):107–111. doi:10.4330/wjc.v6.i3.107

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Greenfield MF (2010) Shellfish-iodine nexus is a myth. J Fam Pract 59(6):314

    PubMed  Google Scholar 

  42. 42.

    Huang SW (2005) Seafood and iodine: an analysis of a medical myth. Allergy Asthma Proc 26(6):468–469

    PubMed  Google Scholar 

  43. 43.

    Lovenstein S, Beck R, Dweck E (2014) Intravenous contrast and iodine allergy myth. Skinmed 12(4):207–208

    PubMed  Google Scholar 

  44. 44.

    Meunier B, Joskin J, Damas F, Meunier P (2013) Iodinated contrast media and iodine allergy: myth or reality? Rev Med Liege 68(9):465–469

    PubMed  Google Scholar 

  45. 45.

    Imazato S, Kinomoto Y, Tarumi H, Ebisu S, Tay FR (2003) Antibacterial activity and bonding characteristics of an adhesive resin containing antibacterial monomer MDPB. Dent Mater 19(4):313–319

    PubMed  Article  Google Scholar 

  46. 46.

    Tezvergil-Mutluay A, Agee KA, Hoshika T, Uchiyama T, Tjäderhane L, Breschi L, Mazzoni A, Thompson JM, McCracken CE, Looney SW, Tay FR, Pashley DH (2011) Inhibition of MMPs by alcohols. Dent Mater 27(9):926–933. doi:10.1016/j.dental.2011.05.004

    PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Jamall IS, Finelli VN, Que Hee SS (1981) A simple method to determine nanogram levels of 4-hydroxyproline in biological tissues. Anal Biochem 112(1):70–75

    PubMed  Article  Google Scholar 

  48. 48.

    Bornstein P, Sage H (1980) Structurally distinct collagen types. Annu Rev Biochem 49:957–1003. doi:10.1146/annurev.bi.49.070180.004521

    PubMed  Article  Google Scholar 

  49. 49.

    Sabatini C (2013) Comparative study of surface microhardness of methacrylate-based composite resins polymerized with light-emitting diodes and halogen. European Journal of Dentistry 7(3):327–335. doi:10.4103/1305-7456.115417

    PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Pramanik A, Laha D, Bhattacharya D, Pramanik P, Karmakar P (2012) A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage. Colloid Surface B 96:50–55. doi:10.1016/j.colsurfb.2012.03.021

    Article  Google Scholar 

  51. 51.

    Klai S, Altenburger M, Spitzmuller B, Anderson A, Hellwig E, Al-Ahmad A (2014) Antimicrobial effects of dental luting glass ionomer cements on streptococcus mutans. ScientificWorldJournal 2014:807086. doi:10.1155/2014/807086

    PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    de Souza AP, Gerlach RF, Line SR (2000) Inhibition of human gingival gelatinases (MMP-2 and MMP-9) by metal salts. Dent Mater 16(2):103–108

    PubMed  Article  Google Scholar 

  53. 53.

    Hojima Y, Behta B, Romanic AM, Prockop DJ (1994) Cadmium ions inhibit procollagen C-proteinase and cupric ions inhibit procollagen N-proteinase. Matrix Biol 14(2):113–120

    PubMed  Article  Google Scholar 

  54. 54.

    Mallya SK, Van Wart HE (1989) Mechanism of inhibition of human neutrophil collagenase by Gold(I) chrysotherapeutic compounds. Interaction at a heavy metal binding site. J Biol Chem 264(3):1594–1601

    PubMed  Google Scholar 

  55. 55.

    Larsen KS, Auld DS (1991) Characterization of an inhibitory metal binding site in carboxypeptidase A. Biochemistry (Mosc) 30(10):2613–2618

    Article  Google Scholar 

  56. 56.

    Bjorndal L, Larsen T (2000) Changes in the cultivable flora in deep carious lesions following a stepwise excavation procedure. Caries Res 34(6):502–508 doi:16631

    PubMed  Article  Google Scholar 

  57. 57.

    Duque C, Negrini Tde C, Sacono NT, Spolidorio DM, de Souza Costa CA, Hebling J (2009) Clinical and microbiological performance of resin-modified glass-ionomer liners after incomplete dentine caries removal. Clin Oral Investig 13(4):465–471. doi:10.1007/s00784-009-0304-2

    PubMed  Article  Google Scholar 

  58. 58.

    Pinto AS, de Araujo FB, Franzon R, Figueiredo MC, Henz S, Garcia-Godoy F, Maltz M (2006) Clinical and microbiological effect of calcium hydroxide protection in indirect pulp capping in primary teeth. Am J Dent 19(6):382–386

    PubMed  Google Scholar 

  59. 59.

    Chaussain-Miller C, Fioretti F, Goldberg M, Menashi S (2006) The role of matrix metalloproteinases (MMPs) in human caries. J Dent Res 85(1):22–32

    PubMed  Article  Google Scholar 

  60. 60.

    Kamigaito M, Ando T, Sawamoto M (2004) Metal-catalyzed living radical polymerization: discovery and developments. Chem Rec 4(3):159–175. doi:10.1002/tcr.20011

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mrs. Michelle Barnes for her outstanding secretarial support. The authors gratefully acknowledge the financial support from SC COBRE for Oral Health Research P20RR017696 and the Medical University of South Carolina Center for Oral Health Research. The authors declare no other conflicts.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Camila Sabatini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Funding

This study was funded by SC COBRE for Oral Health Research; award number: P20RR017696 to Dr. Walter G. Renne.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Renné, W.G., Lindner, A., Mennito, A.S. et al. Antibacterial properties of copper iodide-doped glass ionomer-based materials and effect of copper iodide nanoparticles on collagen degradation. Clin Oral Invest 21, 369–379 (2017). https://doi.org/10.1007/s00784-016-1799-y

Download citation

Keywords

  • Antibacterial
  • Collagen degradation
  • Glass ionomer
  • Matrix metalloproteinases
  • Micro-hardness